Forkhead box P3 (FOXP3)-positive regulatory T cells (Treg) are a unique subset of T cells with immune regulatory properties. Treg cells can be induced from non-Treg CD4+ T cells (induced Treg, iTreg) by T cell receptor (TCR) triggering, IL-2 and TGF-β or retinoic acid. 1,25(OH)2 vitamin D3 (VD3) affects the functions of immune cells including T cells. 1,25(OH)2VD3 binds the nuclear vitamin D receptor (VDR) that binds target DNA sequences known as the vitamin D response element (VDRE). Although 1,25(OH)2VD3 can promote FOXP3 expression in CD4+ T cells with TCR triggering and IL-2, it is unknown whether this effect of 1,25(OH)2VD3 is mediated through direct binding of VDR to the FOXP3 gene without involving other molecules. Also, it is unclear whether FOXP3 expression in 1,25(OH)2VD3-induced Treg (VD-iTreg) cells is critical for the inhibitory function of these cells. Here we demonstrated the presence of VDREs in the intronic conserved non-coding sequence (CNS) region +1714 to +2554 of the human FOXP3 gene and the enhancement of the FOXP3 promoter activity by such VDREs in response to 1,25(OH)2VD3. In addition, VD-iTreg cells suppressed the proliferation of target CD4+ T cells and this activity was dependent on FOXP3 expression. These findings suggest that 1,25(OH)2VD3 can affect human immune responses by regulating FOXP3 expression in CD4+ T cells through direct VDR binding to the FOXP3 gene which is essential for inhibitory function of VD-iTreg cells.
Alterations in immunity that occur with aging likely contribute to the development of infection, malignancy and inflammatory diseases. Naturally occurring CD4 + regulatory T cells (Treg) expressing high levels of CD25 and forkhead box P3 (FOXP3) are essential for regulating immune responses. Here we investigated the effect of aging on the number, phenotypes and function of CD4 + Treg in humans. The frequency and phenotypic characteristics of CD4 + ,FOXP3 + T cells as well as their capacity to suppress inflammatory cytokine production and proliferation of CD4 + ,CD25 − T cells (target cells) were comparable in young (age ≤ 40) and elderly (age ≥ 65) individuals. However, when CD4 + ,FOXP3 + Treg and CD4 + ,CD25 − T cells were co-cultured at a ratio of 1:1, the production of anti-inflammatory cytokine IL-10 from CD4 + ,CD25 − T cells was more potently suppressed in the elderly than in the young. This finding was not due to changes in CTLA-4 expression or apoptosis of CD4 + ,FOXP3 + Treg and CD4 + ,CD25 − T cells. Taken together, our observations suggest that aging may affect the capacity of CD4 + ,FOXP3 + T cells in regulating IL-10 production from target CD4 + T cells in humans although their other cellular characteristics remain unchanged.
Skin is the most superficial body organ and plays an important role in protecting the body from environmental damage and in forming social relations. With the increase of the aging population in our society, dermatological and cosmetic concerns of skin aging are rapidly increasing. Skin aging is a complex process combined with intrinsic and extrinsic factors. Intrinsic or chronological skin aging results from the passage of time and is influenced by genetic factors. Extrinsic skin aging is mainly determined by UV irradiation, also called photoaging. These two types of aging processes are superimposed on sun-exposed skin, and have a common feature of causing dermal matrix alterations that mostly contribute to the formation of wrinkles, laxity, and fragility of aged skin. The dermal matrix contains extracellular matrix proteins such as collagen, elastin, and proteoglycans that confer the strength and resiliency of skin. Skin aging associated with dermal matrix alterations and atrophy can be caused by cellular senescence of dermal cells like fibroblasts, and decreased synthesis and accelerated degradation of dermal matrix components, especially collagen fibers. Both intrinsic aging and photoaging exert influence during each step of dermal matrix alteration via different mechanisms. Mouse models of skin aging have been extensively developed to elucidate intrinsic aging and photoaging processes, to validate in vitro biochemical data, and to test the effects of pharmacological tools for retarding skin aging because they have the advantages of being genetically similar to humans and are easily available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.