Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ~2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut. A r t i c l e s npg © 2016 Nature America, Inc. All rights reserved.Nature GeNetics VOLUME 48 | NUMBER 4 | APRIL 2016 4 3 9 subgenomes of A. hypogaea. Progeny are vigorous, phenotypically normal and fertile and showed lower segregation distortion 16,17 than has been observed for some populations derived from A. hypogaea intraspecific crosses [18][19][20][21] . Therefore, as a first step to characterizing the genome of cultivated peanut, we sequenced and analyzed the genomes of the two diploid ancestors of cultivated peanut. RESULTS Sequencing and assembly of the diploid A and B genomesConsidering that A. duranensis V14167 and A. ipaensis K30076 are likely good representatives of the ancestral species of A. hypogaea, we sequenced their genomes. After filtering, the data generated from the seven paired-end libraries corresponded to an estimated 154× and 163× base-pair coverage for A. duranensis and A. ipaensis, respectively (Supplementary Tables 1-6). The total assembly sizes were 1,211 and 1,512 Mb for A. duranensis and A. ipaensis, respectively, of which 1,081 and 1,371 Mb were represented in scaffolds of 10 kb or greater in size (Supplementary Table 7). Ultradense genetic maps were generated through genotyping by sequencing (GBS) of two diploid recombinant inbred line (RIL) populations (Supplementary Data Set 1). SNPs within scaffolds were used to validate the assemblies and confirmed their high quality; 190 of 1,297 initial scaffolds of A. duranensis and 49 of 353 initial scaffolds of A. ipaensis were identified as chimeric, on the basis of the presence of diagnostic population-wide switches in genotype calls occurring at the point of misjoin. Chimeric scaffolds were split, and their components were remapped. Thus, approximate chromosomal placements were obtained for 1,692 and 459 genetically verified scaffolds, respectively. Conventional molecular marker maps (Supplementary Data Set 2) and syntenic inferences were then used to refine the ordering of scaffolds within the initial genetic bins. Generally, agreement was good for maps in euchromatic arms and poorer in pericentromeric regions (although one map 22 showed large inversions in two lin...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.