Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ~2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut. A r t i c l e s npg © 2016 Nature America, Inc. All rights reserved.Nature GeNetics VOLUME 48 | NUMBER 4 | APRIL 2016 4 3 9 subgenomes of A. hypogaea. Progeny are vigorous, phenotypically normal and fertile and showed lower segregation distortion 16,17 than has been observed for some populations derived from A. hypogaea intraspecific crosses [18][19][20][21] . Therefore, as a first step to characterizing the genome of cultivated peanut, we sequenced and analyzed the genomes of the two diploid ancestors of cultivated peanut. RESULTS Sequencing and assembly of the diploid A and B genomesConsidering that A. duranensis V14167 and A. ipaensis K30076 are likely good representatives of the ancestral species of A. hypogaea, we sequenced their genomes. After filtering, the data generated from the seven paired-end libraries corresponded to an estimated 154× and 163× base-pair coverage for A. duranensis and A. ipaensis, respectively (Supplementary Tables 1-6). The total assembly sizes were 1,211 and 1,512 Mb for A. duranensis and A. ipaensis, respectively, of which 1,081 and 1,371 Mb were represented in scaffolds of 10 kb or greater in size (Supplementary Table 7). Ultradense genetic maps were generated through genotyping by sequencing (GBS) of two diploid recombinant inbred line (RIL) populations (Supplementary Data Set 1). SNPs within scaffolds were used to validate the assemblies and confirmed their high quality; 190 of 1,297 initial scaffolds of A. duranensis and 49 of 353 initial scaffolds of A. ipaensis were identified as chimeric, on the basis of the presence of diagnostic population-wide switches in genotype calls occurring at the point of misjoin. Chimeric scaffolds were split, and their components were remapped. Thus, approximate chromosomal placements were obtained for 1,692 and 459 genetically verified scaffolds, respectively. Conventional molecular marker maps (Supplementary Data Set 2) and syntenic inferences were then used to refine the ordering of scaffolds within the initial genetic bins. Generally, agreement was good for maps in euchromatic arms and poorer in pericentromeric regions (although one map 22 showed large inversions in two lin...
Lettuce (Lactuca sativa) is a major crop and a member of the large, highly successful Compositae family of flowering plants. Here we present a reference assembly for the species and family. This was generated using whole-genome shotgun Illumina reads plus in vitro proximity ligation data to create large superscaffolds; it was validated genetically and superscaffolds were oriented in genetic bins ordered along nine chromosomal pseudomolecules. We identify several genomic features that may have contributed to the success of the family, including genes encoding Cycloidea-like transcription factors, kinases, enzymes involved in rubber biosynthesis and disease resistance proteins that are expanded in the genome. We characterize 21 novel microRNAs, one of which may trigger phasiRNAs from numerous kinase transcripts. We provide evidence for a whole-genome triplication event specific but basal to the Compositae. We detect 26% of the genome in triplicated regions containing 30% of all genes that are enriched for regulatory sequences and depleted for genes involved in defence.
Linkage maps constructed from genetic analysis of gene order and crossover frequency provide few clues to the basis of genomewide distribution of meiotic recombination, such as chromosome structure, that influences meiotic recombination. To bridge this gap, we have generated the first cytological recombination map that identifies individual autosomes in the male mouse. We prepared meiotic chromosome (synaptonemal complex [SC]) spreads from 110 mouse spermatocytes, identified each autosome by multicolor fluorescence in situ hybridization of chromosome-specific DNA libraries, and mapped >2,000 sites of recombination along individual autosomes, using immunolocalization of MLH1, a mismatch repair protein that marks crossover sites. We show that SC length is strongly correlated with crossover frequency and distribution. Although the length of most SCs corresponds to that predicted from their mitotic chromosome length rank, several SCs are longer or shorter than expected, with corresponding increases and decreases in MLH1 frequency. Although all bivalents share certain general recombination features, such as few crossovers near the centromeres and a high rate of distal recombination, individual bivalents have unique patterns of crossover distribution along their length. In addition to SC length, other, as-yet-unidentified, factors influence crossover distribution leading to hot regions on individual chromosomes, with recombination frequencies as much as six times higher than average, as well as cold spots with no recombination. By reprobing the SC spreads with genetically mapped BACs, we demonstrate a robust strategy for integrating genetic linkage and physical contig maps with mitotic and meiotic chromosome structure.
The diaspora of the modern cat was traced with microsatellite markers from the presumed site of domestication to distant regions of the world. Genetic data were derived from over 1100 individuals, representing 17 random-bred populations from five continents and 22 breeds. The Mediterranean was reconfirmed to be the probable site of domestication. Genetic diversity has remained broad throughout the world, with distinct genetic clustering in the Mediterranean basin, Europe/America, Asia and Africa. However, Asian cats appeared to have separated early and expanded in relative isolation. Most breeds were derived from indigenous cats of their purported regions of origin. However, the Persian and Japanese bobtail were more aligned with European/American than with Mediterranean basin or Asian clusters. Three recently derived breeds were not distinct from their parental breeds of origin. Pure breeding was associated with a loss of genetic diversity; however, this loss did not correlate with breed popularity or age.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.