This paper presents a numerical investigation on the aerodynamic performance according to the application of splitter blades in an impeller of a centrifugal fan used for a refuse collection system. Numerical analysis of a centrifugal fan was carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. A validation of numerical results was conducted by comparison with experimental data for the pressure and efficiency. From analyses of the internal flow field of the reference fan, the losses by the reverse-flows were observed in the region of the blade passage. In order to reduce these losses and enhance fan performance, two splitter blades were applied evenly between the main blades, and centrifugal impellers having the different numbers of the main blades were tested with their application. Throughout the numerical analyses of the centrifugal fan with splitter blades, it was found that the reverse-flow regions in the blade passage can be reduced by controlling the main blade numbers with splitter blades. The application of splitter blades in a centrifugal fan leads to significant improvement in the overall fan performance.
A numerical study to investigate the effect of intake vortex occurrence on the performance of an axial hydraulic turbine for generating tidal power energy in Sihwa-lake tidal power plant, Korea, is performed. Numerical analysis of the flow through an axial hydraulic turbine is carried out by solving three-dimensional Reynolds-averaged NavierStokes equations with the shear stress transport turbulence model. In the real turbine operation, the vortex flows are occurred in both the side corners around the intake of an axial hydraulic turbine due to the interaction between the inflow angle of water and intake structure. To analyze these vortex phenomena and to evaluate their impacts on the turbine performance, the internal flow fields of the axial hydraulic turbines with the different inflow angles are compared with their performances. As the results of numerical analysis, the vortex flows do not directly affect the turbine performance.
Aerodynamic Performance of a centrifugal fan with additionally installed splitter blades in the impeller has been investigated numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model and hexahedral grids system were used to analyze the flow in the centrifugal fan. From results of the flow analysis, considerable energy loss by flow separation was observed in the blade passages. Splitter blades were applied between the main blades to reduce the loss and enhance fan performance. The chord length ratio of splitter to main blade, the angle between splitter and main blade, and the height ratio of outlet and inlet of impeller were selected as the geometric parameters, and their effects on the aerodynamic performance of the centrifugal fan have been investigated. The performance of the centrifugal fan with added splitter blades was improved conspicuously compared to the centrifugal fan without splitter blades. It was found that the installation of splitter blades in the impeller is effective to improve the aerodynamic performance of a centrifugal fan by reducing the flow separation generated between main blades in the impeller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.