In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient + 4°C and ambient + 7°C temperatures than at ambient temperature. Photosynthetic CO2 fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield FJ, FI, and FP decreased considerably at ambient + 4°C and ambient + 7°C temperatures, with induction of FK and decrease of FV/FO. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient + 4°C and ambient + 7°C temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters FO, FV/FM, and FV/FO, as well as FK, MO, SM, RC/CS, ETo/CS, PIabs, and SFIabs (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.Additional key words: chlorophyll a fluorescence transient, dark respiration rate, fluorescence parameters, high temperature stress, photosynthetic CO2 fixation rate, water use efficiency
Background and aims Phenology and morphology are two major aspects of crop growth models. A new process-based model built for hardneck garlic (Allium sativum) is presented, focusing on phenology and morphology processes and how they translate to whole-plant growth. The tight coupling between the two processes and their dynamic changes throughout the growing season were captured while incorporating storage effects and reproductive aspects unique to bulbous crops. Methods Non-linear temperature dependences of leaf development were integrated into the model and dynamically coupled with changes in leaf growth throughout the growing season. Bulb storage effects on leaf development and photoperiod effects on the vegetative-to-reproductive transition were also incorporated. The model was parameterized with data from a set of experiments and the literature, while its performance was tested with additional observations that had not been used for parameterization under a range of environmental conditions, management practices and cultivar choices. Key Results The model successfully captured the dynamic nature of leaf development and growth in garlic plants throughout the growing season. It simulated with reasonable accuracy the timing of leaf initiation, maturation and senescence, as well as changes in green leaf area over time. Most parameters were relatively stable across cultivars, and parameter sensitivity tests revealed the importance of bulb storage effects. Conclusions The model embodies a novel approach to capture the phenology and morphology of garlic under a range of environments, genotypes and management practices. The process-oriented nature of the model and inclusion of storage effects set the foundation for bulbous crop growth simulations, allowing the understanding and discovery of key processes that coordinate and integrate the dynamics of growth and development from organ to whole plant, with implications for crop improvement programmes while opening opportunities for modelling other bulbous crops.
To understand how terrestrial ecosystems respond to global climate change, researchers have globally measured the energy, water and carbon dioxide flux densities (F) globally over various types of vegetation by the eddy covariance (EC) method. However, the process of F calculation and the method of quality control and quality assurance (QCQA) are complex and site specific. Moreover, instantly maintaining remote EC flux measurement sites against instrumentation problems and administrative difficulties is laborious. To overcome these issues, particularly those of realtime F monitoring and prompt site management, FluxPro was created.FluxPro consists of three functional systems: 1) a gathering system that transports EC measurements from various sites to the FluxPro management server; 2) a cooking system that computes F and its frictional uncertainty (ε) together with micrometeorological variables (V); and 3) a serving system that presents the results of the gathering and cooking systems as charts to be distributed over the internet in realtime. Consequently, FluxPro could become an appropriate system for realtime-multi-site management, since it not only automatically monitors F with ε and V but also continuously surveils EC sites, including copious information and an email alert system.
We developed a mass production method that simultaneously controls the phase transformation and crystal size of TiO 2 coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick TiO 2 by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous TiO 2 was gradually transformed into the fully anatase phase at approximately 600°C, a mixture of the anatase and rutile phases at approximately 700°C, and the fully rutile phase above approximately 800°C. The crystal size increased with increasing calcination temperature. Moreover, above 600°C, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.