Dynamic oscillatory shear tests are common in rheology and have been used to investigate a wide range of soft matter and complex fluids including polymer melts and solutions, block copolymers, biological macromolecules, polyelectrolytes, surfactants, suspensions, emulsions and beyond. More specifically, Small Amplitude Oscillatory Shear (SAOS) tests have become the canonical method for probing the linear viscoelastic properties of these complex fluids because of the firm theoretical background [1][2][3][4] and the ease of implementing suitable test protocols. However, in most processing operations the deformations can be large and rapid: it is therefore the nonlinear material properties that control the system response. A full sample characterization thus requires well-defined nonlinear test protocols. Consequently there has been a recent renewal of interest in exploiting Large Amplitude Oscillatory Shear (LAOS) tests to investigate and quantify the nonlinear viscoelastic behavior of complex fluids. In terms of the experimental input, both LAOS and SAOS require the user to select appropriate ranges of strain amplitude (γ 0 ) and frequency (ω). However, there is a distinct difference in the analysis of experimental output, i.e. the material response. At sufficiently large strain amplitude, the material response will become nonlinear in LAOS tests and the familiar material functions used to quantify the linear behavior in SAOS tests are no longer sufficient. For example, the definitions of the linear viscoelastic moduli G΄(ω) and G˝(ω) are based inherently on the assumption that the stress response is purely sinusoidal (linear). However, a nonlinear stress response is not a perfect sinusoid and therefore the viscoelastic moduli are not uniquely defined; other methods are needed for quantifying the nonlinear material response under LAOS deformation. In the present review article, we first summarize the typical nonlinear responses observed with complex fluids under LAOS deformations. We then introduce and critically compare several methods that quantify the nonlinear oscillatory stress response. We illustrate the utility and sensitivity of these protocols by investigating the nonlinear response of various complex fluids over a wide range of frequency and amplitude of deformation, and show that LAOS characterization is a rigorous test for rheological models and 3 advanced quality control.
in Wiley Online Library (wileyonlinelibrary.com).Key microstructural properties of particulate coatings such as porosity and particle order are established during drying. Therefore, understanding the evolution of particulate distributions during drying is useful for designing coating properties. Here, a 1D model is proposed for the particle distribution through the coating thickness at different drying times and conditions, including Brownian diffusion, sedimentation, and evaporation. Effects of particle concentration on diffusion and sedimentation rates are included. Results are condensed onto a drying regime map which predicts the presence of particle surface accumulation or sediment based on two dimensionless numbers: the Peclet number and the sedimentation number. Cryogenic scanning electron microscopy (cryoSEM) is used to image the transient particulate distributions during the drying of a model system comprised of monodisperse silica particles in water. Particle size and evaporation rates are altered to access various domains of the drying map. There is good agreement between cryoSEM observations and model predictions.
The deformability of the red blood cell (RBC), is known to be closely related to microcirculation and diagnosis of specific diseases such as malaria, arterial sclerosis, sepsis, and so on. From the viewpoint of the flow type, conventional methods to measure the cell deformability have exploited simple shear or complex flow field with little focus on extensional flow field. In this paper, we present a new approach to assess cell deformability under the extensional flow field. For this purpose, a hyperbolic converging microchannel was designed, and the cell deformation in the extensional flow region was continuously monitored. It overcomes the limitation of conventional methods by reducing experiment time. As quantified by the degree of deformation, the extensional flow (Deformation Index = 0.51 at 3.0 Pa) was found to be more efficient in inducing cell deformation compared to the shear flow (Deformation Index = 0.29 at 3.0 Pa). This indicates the insufficiency of the existing models that predict the blood damage in artificial organs, which only consider shear flow. Also, this method could detect the heat-induced difference in deformability of RBCs. It provides a new platform to study the clinical effect of RBC deformability under extensional flow, and is expected to contribute the association of several diseases and deformability of RBCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.