Digitaria ciliaris is widely reported to be a problematic weed in agricultural areas and is mainly used as an indicator plant for the development of herbicides. However, its bioactivities on skin regeneration and wound healing have not been investigated. In the present study, we investigated the effects of D. ciliaris flower absolute on skin wound healing and skin regeneration-related events, that is, proliferation, migration, and collagen biosynthesis, in human fibroblasts and keratinocytes. For this study, we extracted absolute from the D. ciliaris flower by solvent extraction and identified the composition of D. ciliaris flower absolute using GC/MS analysis. We also tested the effect of D. ciliaris flower absolute in CCD986sk fibroblasts and/or HaCaT keratinocytes using the WST assay and 5-bromo-2′-deoxyuridine incorporation assay, Boyden chamber assay, ELISA, sprouting assay, and immunoblotting. GC/MS analysis of D. ciliaris flower absolute revealed that it contained 15 compounds. The absolute increased the proliferations of keratinocytes and fibroblasts and the migration of fibroblasts but did not affect cell viabilities. In addition, it enhanced the syntheses of type I and IV collagen in fibroblasts, but not in keratinocytes. The sprouting assay showed increased sprout outgrowth of fibroblasts. In addition, D. ciliaris flower absolute induced the phosphorylation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in fibroblasts. These results indicate that D. ciliaris flower absolute may promote skin wound healing/regeneration by inducing the proliferation, migration, and collagen synthesis of fibroblasts, as well as the proliferation of keratinocytes. Therefore, D. ciliaris flower absolute may be a potential natural source for cosmetic or pharmaceutical agents that promote skin wound healing/regeneration.
BackgroundGinseng extracts are known to have angiogenic effects. However, to date, only limited information is available on the molecular mechanism underlying the angiogenic effects and the main components of ginseng that exert these effects. Human umbilical-vein endothelial cells (HUVECs) are used as an in vitro model for screening therapeutic agents that promote angiogenesis and wound healing. We recently isolated gintonin, a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand, from ginseng. LPA plays a key role in angiogenesis and wound healing.MethodsIn the present study, we investigated the in vitro effects of gintonin on proliferation, migration, and tube formation of HUVECs, which express endogenous LPA1/3 receptors.ResultsGintonin stimulated proliferation and migration of HUVECs. The LPA1/3 receptor antagonist, Ki16425, short interfering RNA against LPA1 or LPA3 receptor, and the Rho kinase inhibitor, Y-27632, significantly decreased the gintonin-induced proliferation, migration, and tube formation of HUVECs, which indicates the involvement of LPA receptors and Rho kinase activation. Further, gintonin increased the release of vascular endothelial growth factors from HUVECs. The cyclooxygenase-2 inhibitor NS-398, nuclear factor kappa B inhibitor BAY11-7085, and c-Jun N-terminal kinase inhibitor SP600125 blocked the gintonin-induced migration, which shows the involvement of cyclooxygenase-2, nuclear factor kappa B, and c-Jun N-terminal kinase signaling.ConclusionThe gintonin-mediated proliferation, migration, and vascular-endothelial-growth-factor release in HUVECs via LPA-receptor activation may be one of in vitro mechanisms underlying ginseng-induced angiogenic and wound-healing effects.
These results demonstrate that DJ-1/park7 protein may be implicated in the regulation of vascular contractility and blood pressure, probably by the impairment of NO production through H2O2-mediated epigenetic inhibition of eNOS expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.