Europe, USA, China, Japan, and Korea, which possess advanced railway technologies, have attempted to develop high-speed rail technology and ensure safety based on social requirements and the need for greater speeds. However, despite these efforts, there have been recent reports of train accidents resulting in loss of lives. Fatal train accidents usually involve derailments or collisions that do not happen frequently. However, when they occur, the damage is catastrophic. Therefore, a protection infrastructure should be installed to minimize such damage. Since the high-speed railways were introduced in Korea, derailment containment walls have been constructed to mitigate and minimize the damages caused by such accidents. The need for the judgment of effectiveness and feasibility review of the derailment containment walls in terms of economics and construction ability has been presented by designers and constructors. In this paper, the authors have evaluated the containment capacity and collision durability (crashworthiness) of a derailment containment wall, constructed in Korea, using a collision simulation after the derailment of a train.
Fatal train accidents usually involve derailments or collisions. ese derailment/collision accidents are infrequent. However, the damage due to derailment can be catastrophic. Derailment containment walls are usually used in Korea to minimize such damages. However, the impact forces that are needed to design the derailment containment walls were not well defined, and only limited studies were conducted for the behavior of the derailment containment walls. In this study, the focus was made on the impact force analysis of the containment wall through a series of 3D collision simulation after train derailment. Finite element modeling was conducted to analyze the dynamic behavior of the derailed train that collides with a structure such as containment wall using the LS-DYNA analysis software application. e FE models of car bodies, bogie frames, and wheel sets were created such that full conformity was achieved between their numerical models and actual vehicles with respect to the masses and principal mass moments of inertia. In addition, various installation situations of the containment wall were considered for the collision simulation. Finally, the economical alternative method to reduce the impact force was proposed.
A continuous welded rail has immovable zones due to its structural characteristics. In an immovable zone, thermal expansion and contraction of rails are restricted when the temperature changes, thereby causing excessive axial force on the rail. When the immovable zone of the continuous welded rail is located on a bridge, additional stress and displacement occur through track–bridge interactions. Additional stress and displacement of the rail compared to the embankment area are restricted when constructing the bridge under the continuous welded rail track to prevent problems with the track–bridge interaction according to UIC 774-3R and Euro codes. According to the various codes, the maximum allowable additional compressive stress is 72 MPa, with the conditions of a curve with a radius (R) ≥ 1500 m, UIC 60 continuous welded rail (tensile strength of at least 900 MPa), ballasted track with concrete sleepers and 30 cm of deep for a well-consolidated ballast. However, the lateral resistance that has the greatest effect on track stability can depend on the conditions mentioned above. Therefore, an additional review of various track conditions is required. In this paper, an evaluation of the current criteria was performed using the minimum buckling strength calculation formula, and the allowable additional stress on the rail suggested by codes could only be used on tracks with a large lateral resistance above 18 kN/m/track. Thus, a three-dimensional nonlinear analysis model was developed and analyzed to calculate the allowable additional compressive stress considering various track conditions. According to the results of the analysis, the allowable additional compressive stress was reduced with a comparatively small lateral resistance. The freedom of design can be enhanced with respect to the parameters of various track and bridge conditions using this model.
In the case of CWR (Continuous welded rail) located on the railway bridge, the CWR has additional axial force due to interaction of bridge and track. Therefore, the CWR tracks located on the bridge have to secure the safety of running train and CWR track through mitigating influence for interaction of bridge and track. The railway design guide in Korea (KR C-08080) provides a certain value for property of longitudinal friction behavior of rail fastening system that is major parameter of interaction behavior by applying European codes. However, in order to apply to domestic railway, it is necessary to review property characteristics of the rail fastening system in actual use. In this paper, the experiment for longitudinal friction behavior of rail fastener applied to concrete track on the railway bridge in Korea was carried out, and statistical characteristic for property of the rail fastener was analyzed from the result of the experiment.
CWR(Continuous Welded Rail) has many advantages such as the reduction of maintenance costs, increase of service life of the track components and reduction of vibration and noise and so on. However, the stability problems such as the lateral buckling of CWR track has been occurred. Theoretical and experimental studies have been done in order to secure stability of CWR track for many years in the many country research institutes. In this study, analytical model was developed by using a commercial FE program to examine the stability of CWR track. Verification studies were conducted such as snap-through behavior, large deformation analysis and Euler-buckling analysis due to temperature. Also, to prove the validity of the developed model, comparison study was done with existing verified 3D CWR buckling analysis results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.