This study investigated the effects of fluorine (F) diffusion from a CYTOP passivation layer into amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). The F contained in the CYTOP passivation layer was diffused into a-IGZO through 350 °C annealing. The similar ionic radii of F and oxygen (O) allowed the passivation of oxygen vacancy (Vo) and weakly bonded oxygen by F. As a result, the a-IGZO TFTs with CYTOP passivation were highly stable under various stresses. The threshold voltage (Vth) shifts of a-IGZO TFTs without CYTOP passivation and with CYTOP passivation under a negative bias stress test for 10 000 s were −6.7 V and −2.5 V, respectively. In addition, the Vth shifts of each device under a negative bias illumination stress test for 4000 s were −10.9 V and −5.3 V, respectively. This improvement was caused by a reduction of Vo and a widened band gap of a-IGZO through the F diffusion effect. In addition, the CYTOP passivation layer maintained excellent properties as a barrier against moisture after 350 °C annealing.
We demonstrate a novel structure for a quantum-dot light-emitting diode (QD-LED) with wide-range colour-tuneable pixels, fabricated via full solution processing. The proposed device has a symmetrical structure produced via stacking...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.