SUMMARYA robust learning controller is presented for DC motor driven mechanical systems with friction. The proposed controller takes advantage of both robust and learning control approaches to learn and compensate periodic and non-periodic uncertain dynamics. In the learning controller, a set of learning rules is implemented in which three types of learnings occur: one is direct learning of desired inverse dynamics input and the other two learning of unknown linear parameters and nonlinear bounding functions in the models of system dynamics and friction. The global asymptotic stability of learning control system is shown by using the Lyapunov stability theory. Experimental data demonstrate the effectiveness of developed learning approach to tracking of DC motor driven mechanical systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.