The three-dimensional (3D) multicellular tumor spheroids (MCTs) model is becoming an essential tool in cancer research as it expresses an intermediate complexity between 2D monolayer models and in vivo solid tumors. MCTs closely resemble in vivo solid tumors in many aspects, such as the heterogeneous architecture, internal gradients of signaling factors, nutrients, and oxygenation. MCTs have growth kinetics similar to those of in vivo tumors, and the cells in spheroid mimic the physical interaction of the tumors, such as cell-to-cell and cell-to-extracellular matrix interactions. These similarities provide great potential for studying the biological properties of tumors and a promising platform for drug screening and therapeutic efficacy evaluation. However, MCTs are not well adopted as preclinical tools for studying tumor behavior and therapeutic efficacy up to now. In this review, we addressed the challenges with MCTs application and discussed various efforts to overcome the challenges.
The mechanical properties of single cells have been recently identified as the basis of an emerging approach in medical applications because they are closely related to the biological processes of cells and, ultimately, human health conditions. In this article, we provide a brief review of the intrinsic mechanical properties of single cells related to cancer and aging. The mechanical properties can be used as biomarkers for early cancer diagnosis because cancer cells have a lower Young's modulus, indicating higher elasticity or softness than their counterpart normal cells. The metastatic potential of cancer cells is inversely correlated with their elastic properties. Aging induces stiffness through an increased amount of cytoskeletal fiber. Changes in the mechanical properties also show potential for drug screening. Although there are several challenges to be met before clinical applications can be made, such mechanical properties of single cells may provide new approaches to human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.