We investigate properties of identities and some interesting identities of symmetry for the Bernoulli polynomials of higher order using the multivariate p-adic invariant integral on Z p .
In this paper, we derive a family of ordinary differential equations from the generating function of the Laguerre polynomials. Then these differential equations are used in order to obtain some properties and new identities for those polynomials.MSC: 05A19; 33C45; 11B37; 35G35
The main purpose of this paper is to find some interesting symmetric identities for the ( p , q ) -Hurwitz-Euler eta function in a complex field. Firstly, we define the multiple ( p , q ) -Hurwitz-Euler eta function by generalizing the Carlitz’s form ( p , q ) -Euler numbers and polynomials. We find some formulas and properties involved in Carlitz’s form ( p , q ) -Euler numbers and polynomials with higher order. We find new symmetric identities for multiple ( p , q ) -Hurwitz-Euler eta functions. We also obtain symmetric identities for Carlitz’s form ( p , q ) -Euler numbers and polynomials with higher order by using symmetry about multiple ( p , q ) -Hurwitz-Euler eta functions. Finally, we study the distribution and symmetric properties of the zero of Carlitz’s form ( p , q ) -Euler numbers and polynomials with higher order.
In this paper, we introduce the two variable degenerate Hermite polynomials and obtain some new symmetric identities for two variable degenerate Hermite polynomials. In order to give explicit identities for two variable degenerate Hermite polynomials, differential equations arising from the generating functions of degenerate Hermite polynomials are studied. Finally, we investigate the structure and symmetry of the zeros of the two variable degenerate Hermite equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.