Recently, the incidence of heat waves has increased due to climate change, and the resultant mortalities and socio-economic damage are also increasing in Korea. Hence, emphasis has been placed on research examining heatwaves and their effects. Predicting the probability of heatwave in advance is very important from the perspective of disaster risk management; however, related studies have been insufficient so far. Therefore, in this study, the probability of future heatwave onset was predicted using daily scaled past weather data for Seoul Metropolitan Government. For the analysis, models based on recurrent neural networks (RNN, LSTM, GRU) were used, which are suitable for analyzing time-series data. Upon evaluating the performance of the GRU model, which was selected as the optimized model, no overfitting problem was observed. The prediction accuracy of the model was high as it demonstrated a reproduction of 78% and 86% of actual heatwave days during the validation and test process, respectively. Therefore, this model can be used by each local government to coordinate an efficient response to heat waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.