Gross chromosome rearrangements (GCRs), such as translocations, deletion of a chromosome arm, interstitial deletions and inversions, are often observed in cancer cells. Spontaneous GCRs are rare in Saccharomyces cerevisiae; however, the existence of mutator mutants with increased genome instability suggests that GCRs are actively suppressed. Here we show by genetic analysis that these genome rearrangements probably result from DNA replication errors and are suppressed by at least three interacting pathways or groups of proteins: S-phase checkpoint functions, recombination proteins and proteins that prevent de novo addition of telomeres at double-strand breaks (DSBs). Mutations that inactivate these pathways cause high rates of GCRs and show synergistic interactions, indicating that the pathways that suppress GCRs all compete for the same DNA substrates.
Cancer cells show increased genome rearrangements, although it is unclear what defects cause these rearrangements. Mutations in Saccharomyces cerevisiae RFC5, DPB11, MEC1, DDC2 MEC3, RAD53, CHK1, PDS1, and DUN1 increased the rate of genome rearrangements up to 200-fold whereas mutations in RAD9, RAD17, RAD24, BUB3, and MAD3 had little effect. The rearrangements were primarily deletion of a portion of a chromosome arm along with TEL1-dependent addition of a new telomere. tel1 mutations increased the proportion of translocations observed, and in some cases showed synergistic interactions when combined with mutations that increased the genome rearrangement rate. These data suggest that one role of S phase checkpoint functions in normal cells is to suppress spontaneous genome rearrangements resulting from DNA replication errors.
Most human cancer cells show signs of genome instability, ranging from elevated mutation rates to gross chromosomal rearrangements and alterations in chromosome number. Little is known about the molecular mechanisms that generate this instability or how it is suppressed in normal cells. Recent studies of the yeast Saccharomyces cerevisiae have begun to uncover the extensive and redundant pathways that keep the rate of genome rearrangements at very low levels. These studies, which we review here, have implicated more than 50 genes in the suppression of genome instability, including genes that function in S-phase checkpoints, recombination pathways, and telomere maintenance. Human homologs of several of these genes have well-established roles as tumor suppressors, consistent with the hypothesis that the mechanisms preserving genome stability in yeast are the same mechanisms that go awry in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.