A real-time forecast (RTF) system using Weather Research and Forecast (WRF) model version 2.2 is used to evaluate the diurnal variation of precipitation over South Korea in the summer (June to August) of 2007. The characteristics of the observed precipitation are also analyzed. The analysis and simulation period is divided into two sub-periods following the end of the changma, or East Asian monsoon, in 2007: Period_1 is from 1 June to 21 July, and Period_2 is from 22 July to 31 August. A 24-h precipitation cycle is observed over the entire period. The diurnal variation of precipitation over the South Korea shows that the nighttime maximum precipitation in Period_1 is affected by a largescale system; in contrast, the daytime maximum precipitation in Period_2 resulted from mesoscale convections is induced by thermal instability and moisture advection. The phases of the diurnal variation of simulated precipitation are consistent with those of the observed precipitation. The daytime rainfall amount of simulated precipitation in Period_2 is overestimated, and the convective rain process significantly affects the simulated total precipitation. The daytime overestimated precipitation is associated with overestimations of low-level temperature and moisture during the daytime in the model simulations as compared with the observations.
The El Niño-Southern Oscillation (ENSO) influence on the East Asian winter monsoon (EAWM) exhibits remarkable non-stationarity on subseasonal timescales, severely limiting climate predictability. Here, based on observational and reanalysis datasets, we identify a robust subseasonal variability in the EAWM response to ENSO, with a notable synchronous break in mid-January lasting about 10 days. We suggest that this breakdown is largely caused by interference from the abrupt phase reversal of the ENSO-driven North Atlantic Oscillation (NAO), which occurs about a week earlier in early January. During El Niño years, the NAO phase transition from positive to negative triggers a rapid change in the mid-latitude atmospheric circulation via the quasi-stationary Rossby wave adjustment. This results in the strengthening of the Siberian high, which produces strong northerly wind anomalies over East Asia, while the anomalous western North Pacific anticyclone weakens and shifts to the southeast, eventually leading to the collapse of the teleconnection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.