With the recent advances in battery-based mobile computing technologies, power-saving techniques in real-time embedded devices are becoming increasingly important. This paper presents a novel job scheduling policy for real-time systems, which aims at minimizing the power consumption of processor and memory without missing the deadline constraints of real-time jobs. To do so, we formulate the power saving techniques of processor voltage/frequency scaling and memory job placement as a unified measure, and show that it is a complex search problem that has the exponential time complexity. Thus, an efficient heuristic based on evolutionary computation is performed to cut down the huge searching space and find a reasonable schedule within the feasible time budget. To evaluate the proposed scheduling policy, we conduct experiments under various workload conditions. Our experimental results show that the proposed policy significantly reduces the energy consumption of real-time systems. Specifically, the average reduction in the energy consumption is 41.7% without deadline misses. INDEX TERMS Real-time job scheduling; evolutionary computation; power saving; genetic algorithm; dynamic voltage/frequency scaling; deadline.
In modern smart buildings, the electricity consumption of a building is monitored every time and costs differently at each time slot of a day. Smart buildings are also equipped with indoor sensors that can track the movement of human beings. In this paper, we propose a new elevator control system (ECS) that utilizes two kinds of context information in smart buildings: (1) human movements estimated by indoor sensors and (2) dynamic changes of electricity price. In particular, indoor sensors recognize elevator passengers before they press the elevator call buttons, and smart meters inform the dynamically changing price of the electricity to ECS. By using this information, our ECS aims at minimizing both the electricity cost and the waiting time of passengers. As this is a complex optimization problem, we use an evolutionary computation technique based on genetic algorithms (GA). We inject a learning module into the control unit of ECS, which monitors the change of the electricity price and the passengers’ traffic detected by sensors. Experimental results with the simulator we developed show that our ECS outperforms the scheduling configuration that does not consider sensor information or electricity price changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.