c Impairment of astrocytic glutamate transporter (GLT-1; EAAT2) function is associated with multiple neurodegenerative diseases, including Parkinson's disease (PD) and manganism, the latter being induced by chronic exposure to high levels of manganese (Mn). Mn decreases EAAT2 promoter activity and mRNA and protein levels, but the molecular mechanism of Mn-induced EAAT2 repression at the transcriptional level has yet to be elucidated. We reveal that transcription factor Yin Yang 1 (YY1) is critical in repressing EAAT2 and mediates the effects of negative regulators, such as Mn and tumor necrosis factor alpha (TNF-␣), on EAAT2. YY1 overexpression in astrocytes reduced EAAT2 promoter activity, while YY1 knockdown or mutation of the YY1 consensus site of the EAAT2 promoter increased its promoter activity and attenuated the Mn-induced repression of EAAT2. Mn increased YY1 promoter activity and mRNA and protein levels via NF-B activation. This led to increased YY1 binding to the EAAT2 promoter region. Epigenetically, histone deacetylase (HDAC) classes I and II served as corepressors of YY1, and, accordingly, HDAC inhibitors increased EAAT2 promoter activity and reversed the Mn-induced repression of EAAT2 promoter activity. Taken together, our findings suggest that YY1, with HDACs as corepressors, is a critical negative transcriptional regulator of EAAT2 and mediates Mn-induced EAAT2 repression.
The G protein-coupled estrogen receptor GPR30 contributes to the neuroprotective effects of 17β-estradiol (E2); however, the mechanisms associated with this protection have yet to be elucidated. Given that E2 increases astrocytic expression of glutamate transporter-1 (GLT-1), which would prevent excitotoxic-induced neuronal death, we proposed that GPR30 mediates E2 action on GLT-1 expression. To investigate this hypothesis, we examined the effects of G1, a selective agonist of GPR30, and GPR30 siRNA on astrocytic GLT-1 expression, as well as glutamate uptake in rat primary astrocytes, and explored potential signaling pathways linking GPR30 to GLT-1. G1 increased GLT-1 protein and mRNA levels, subject to regulation by both MAPK and PI3K signaling. Inhibition of TGF-α receptor suppressed the G1-induced increase in GLT-1 expression. Silencing GPR30 reduced the expression of both GLT-1 and TGF-α and abrogated the G1-induced increase in GLT-1 expression. Moreover, the G1-induced increase in GLT-1 protein expression was abolished by a protein kinase A inhibitor and an NF-κB inhibitor. G1 also enhanced cAMP response element-binding protein (CREB), as well as both NF-κB p50 and NF-κB p65 binding to the GLT-1 promoter. Finally, to model dysfunction of glutamate transporters, manganese was used, and G1 was found to attenuate manganese-induced impairment in GLT-1 protein expression and glutamate uptake. Taken together, the present data demonstrate that activation of GPR30 increases GLT-1 expression via multiple pathways, suggesting that GPR30 is worthwhile as a potential target to be explored for developing therapeutics of excitotoxic neuronal injury.
Background: Tamoxifen (TX), a selective estrogen receptor modulator, enhances glutamate transporter (GLT-1) expression in astrocytes. Results: TX up-regulated GLT-1 expression via the CREB and NF-B pathways. Conclusion: TX enhanced GLT-1 expression at the transcriptional level. Significance: Understanding the mechanisms of TX action on GLT-1 will contribute to the development of neuroprotectants against excitotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.