The etiology of major depression (MDD), a common and complex disorder, remains obscure. Gene expression profiling was conducted on post-mortem brain tissue samples from Brodmann Area 10 (BA10) in the prefrontal cortex from psychotropic drug-free persons with a history of MDD and age, gender, and post-mortem interval matched normal controls (n=14 pairs of subjects). Microarray analysis was conducted using the Affymetrix Exon 1.0 ST arrays. A list of differential expression changes were determined by dual fold change-probability criteria (|ALR|>0.585 [equivalent to a 1.5-fold difference in either direction], p<0.01), while molecular pathways of interest were evaluated using Gene Set Enrichment Analysis (GSEA) software. The results strongly implicate increased apoptotic stress in the samples from the MDD group. Three anti-apoptotic factors, Y-box binding protein 1 (YBX1), Caspase-1 dominant-negative inhibitor pseudo-ICE (COP1), and the putative apoptosis inhibitor FKGS2 were over-expressed. Gene set analysis suggested up-regulation of a variety of pro- and anti-inflammatory cytokines, including interleukin 1α (IL1α), IL2, IL3, IL5, IL8, IL9, IL10, IL12A, IL13, IL15, IL18, interferon gamma (IFNγ), and lymphotoxin alpha (LTA; TNF super family member 1). The genes showing reduced expression included metallothionein 1M (MT1M), a zinc binding protein with a significant role in the modulation of oxidative stress. The results of this study suggest that post-mortem brain tissue samples from BA10, a region which is involved in reward-related behavior, show evidence of local inflammatory, apoptotic, and oxidative stress in MDD.
Current techniques for mimicking the Blood-Brain Barrier (BBB) largely use incubation chambers (Transwell) separated with a filter and matrix coating to represent and to study barrier permeability. These devices have several critical shortcomings; (a) they do not reproduce critical microenvironmental parameters, primarily anatomical size or hemodynamic shear stress, (b) they often do not provide real-time visualization capability, and (c) they require a large amount of consumables. To overcome these limitations, we have developed a microfluidics based Synthetic Microvasculature model of the Blood-Brain Barrier (SyM-BBB). The SyM-BBB platform is comprised of a plastic, disposable and optically clear microfluidic chip with a microcirculation sized two-compartment chamber. The chamber is designed in such a way as to permit the realization of side-by-side apical and basolateral compartments, thereby simplifying fabrication and facilitating integration with standard instrumentation. The individually addressable apical side is seeded with endothelial cells and the basolateral side can support neuronal cells or conditioned media. In the present study, an immortalized Rat Brain Endothelial cell line (RBE4) was cultured in SyM-BBB with a perfusate of Astrocyte Conditioned Media (ACM). Biochemical analysis showed upregulation of tight junction molecules while permeation studies showed an intact BBB. Finally, transporter assay was successfully demonstrated in SyM-BBB indicating a functional model.
Glutamine (Gln) is found abundantly in the central nervous system (CNS) where it participates in a variety of metabolic pathways. Its major role in the brain is that of a precursor of the neurotransmitter amino acids: the excitatory amino acids, glutamate (Glu) and aspartate (Asp), and the inhibitory amino acid, γ-amino butyric acid (GABA). The precursor-product relationship between Gln and Glu/GABA in the brain relates to the intercellular compartmentalization of the Gln/Glu(GABA) cycle (GGC). Gln is synthesized from Glu and ammonia in astrocytes, in a reaction catalyzed by Gln synthetase (GS), which, in the CNS, is almost exclusively located in astrocytes (Martinez-Hernandez et al., 1977). Newly synthesized Gln is transferred to neurons and hydrolyzed by phosphate-activated glutaminase (PAG) to give rise to Glu, a portion of which may be decarboxylated to GABA or transaminated to Asp. There is a rich body of evidence which indicates that a significant proportion of the Glu, Asp and GABA derived from Gln feed the synaptic, neurotransmitter pools of the amino acids. Depolarization-induced-, calcium- and PAG activity-dependent releases of Gln-derived Glu, GABA and Asp have been observed in CNS preparations in vitro and in the brain in situ. Immunocytochemical studies in brain slices have documented Gln transfer from astrocytes to neurons as well as the location of Gln-derived Glu, GABA and Asp in the synaptic terminals. Patch-clamp studies in brain slices and astrocyte/neuron co-cultures have provided functional evidence that uninterrupted Gln synthesis in astrocytes and its transport to neurons, as mediated by specific carriers, promotes glutamatergic and GABA-ergic transmission. Gln entry into the neuronal compartment is facilitated by its abundance in the extracellular spaces relative to other amino acids. Gln also appears to affect neurotransmission directly by interacting with the NMDA class of Glu receptors. Transmission may also be modulated by alterations in cell membrane polarity related to the electrogenic nature of Gln transport or to uncoupled ion conductances in the neuronal or glial cell membranes elicited by Gln transporters. In addition, Gln appears to modulate the synthesis of the gaseous messenger, nitric oxide (NO), by controlling the supply to the cells of its precursor, arginine. Disturbances of Gln metabolism and/or transport contribute to changes in Glu-ergic or GABA-ergic transmission associated with different pathological conditions of the brain, which are best recognized in epilepsy, hepatic encephalopathy and manganese encephalopathy.
Astrocytes assume multiple roles in maintaining an optimally suited milieu for neuronal function. Select astrocytic functions include the maintenance of redox potential, the production of trophic factors, the regulation of neurotransmitter and ion concentrations, and the removal of toxins and debris from the cerebrospinal fluid (CSF). Impairments in these and other functions, as well as physiological reactions of astrocytes to injury, can trigger or exacerbate neuronal dysfunction. This review addresses select metabolic interactions between neurons and astrocytes and emphasizes the role of astrocytes in mediating and amplifying the progression of several neurodegenerative disorders, such as Parkinson’s disease (PD), hepatic encephalopathy (HE), hyperammonemia (HA), Alzheimer’s disease (AD), and ischemia.
The G protein-coupled estrogen receptor GPR30 contributes to the neuroprotective effects of 17β-estradiol (E2); however, the mechanisms associated with this protection have yet to be elucidated. Given that E2 increases astrocytic expression of glutamate transporter-1 (GLT-1), which would prevent excitotoxic-induced neuronal death, we proposed that GPR30 mediates E2 action on GLT-1 expression. To investigate this hypothesis, we examined the effects of G1, a selective agonist of GPR30, and GPR30 siRNA on astrocytic GLT-1 expression, as well as glutamate uptake in rat primary astrocytes, and explored potential signaling pathways linking GPR30 to GLT-1. G1 increased GLT-1 protein and mRNA levels, subject to regulation by both MAPK and PI3K signaling. Inhibition of TGF-α receptor suppressed the G1-induced increase in GLT-1 expression. Silencing GPR30 reduced the expression of both GLT-1 and TGF-α and abrogated the G1-induced increase in GLT-1 expression. Moreover, the G1-induced increase in GLT-1 protein expression was abolished by a protein kinase A inhibitor and an NF-κB inhibitor. G1 also enhanced cAMP response element-binding protein (CREB), as well as both NF-κB p50 and NF-κB p65 binding to the GLT-1 promoter. Finally, to model dysfunction of glutamate transporters, manganese was used, and G1 was found to attenuate manganese-induced impairment in GLT-1 protein expression and glutamate uptake. Taken together, the present data demonstrate that activation of GPR30 increases GLT-1 expression via multiple pathways, suggesting that GPR30 is worthwhile as a potential target to be explored for developing therapeutics of excitotoxic neuronal injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.