The ncd protein is a dimeric, ATP-powered motor that belongs to the kinesin family of microtubule motor proteins. Here we resolve single mechanochemical cycles of recombinant, dimeric, full-length ncd, using optical-tweezers-based instrumentation and a three-bead, suspended-microtubule assay. Under conditions of limiting ATP, isolated and transient microtubule-binding events exhibit exponentially distributed and ATP-concentration-dependent lifetimes. These events do not involve consecutive steps along the microtubule, quantitatively confirming that ncd is non-processive. At low loads, a single motor molecule produces ATP-triggered working strokes of about 9 nm, which occur at the ends of binding events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.