The present paper presents a two-dimensional numerical study about the geometric optimization of an ocean Wave Energy Converter (WEC) into electrical energy that has as operational principal the Oscillating Water Column (OWC). To do so, the Constructal Design fundamentals were employed to vary the degree of freedom H1/L (ratio between height and length of the OWC chamber), while the other degree of freedom H2/l (ration between height and length of chimney) was kept constant. The OWC chamber area (φ1) and the total OWC area (φ2) are also kept fixed, being the problem constraints. In this study was adopted a regular wave with laboratory scale dimensions. The main goal was to optimize the device’s geometry aiming to maximize the absorbed power when it is subjected to a defined wave climate. For the numerical solution it was used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, which is based on the Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model was applied to treat the water-air interaction. The computational domain was represented by an OWC device coupled into a wave tank. Thereby, it was possible to analyze the WEC subjected to regular wave incidence. An optimal geometry was obtained for (H1/L)o=0.84, being this one approximately ten times more efficient then the worst case (H1/L = 0.14), showing the applicability of Constructal Design in this kind of engineering problem.
Studies related to ocean energy are getting more important lately, once world claims for renewable energy usage. The Overtopping Device is a kind of Ocean Waves Energy Converter (OWEC), which main concept is storing water provided by incident waves above sea level to feed a set of low head turbines. In order to obtain the desired effect, this device contains a ramp which elevates the incident waves toward the reservoir. Present study aims to perform a numerical model of a 2D Overtopping Device by means of OpenFOAM simulations. OpenFOAM is a free open source code which has shown applicability in many areas of engineering. The adopted solver (InterFOAM) is Volume of Fluid based (VOF) according to Finite Volume Method (FVM), these methodologies has been largely used among researchers in propagating waves field. FLUENT (commercial code) is used to verify OpenFOAM's results. Once, the main point of this paper is to present OpenFOAM as a considerable tool for propagating waves studies, it firstly presents a numerical wave verification with analytical solutions (second order Stokes theory). The second section of results presents overtopping time series peaks in 100 s of simulation. Also, by mass flow rate integration, it presents total mas of water climbed to the reservoir. The integration of mass flow rate takes 94 s of simulation (not 100 s) because it is noticeable a pause between two peaks of overtopping at that time. Results show agreement between wave elevation and wave velocity profiles with straight convergence of periods between analytical and numerical waves. Most important differences are found near air/water interface, owed to faster air flow at that region. Generally OpenFOAM and FLUENT results are similar, with converged overtopping time series peaks and their magnitudes too. Similarly, the amount of water marked by both software are close with very similar trend lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.