This paper presents the results of investigations recently done by our research group that lead to a new and much better approach to the design of GMI (giant magnetoimpedance) magnetic transducers, which considers the changes in the impedance phase characteristics of GMI sensors due to varying low-intensity magnetic fields, instead of the usual impedance magnitude characteristics considered in the GMI literature. The development process of this new class of magnetic field transducers is discussed, beginning with the definition of the ideal conditioning of the GMI sensor elements (the dc level and frequency of the excitation current and the sample length), proceeding to compare the differences observed between the impedance magnitude and phase of GMI sensors and closing with the electronic circuits that condition ribbon-shaped GMI sensors and read their phase or magnitude variation as a function of the longitudinal magnetic field. Simulation studies, including the full electronic circuit and based on the experimental data obtained from measured GMI curves, have shown that an improvement in the sensitivity of GMI magnetometers larger than ten times can be expected when phase-based transducers are used instead of magnitude-based transducers. Finally, it is also shown that phase-based transducers are highly adequate for miniaturization purposes.
Abstract. The location and surgical removal of foreign bodies in patients is still challenging, especially for firearm projectiles, which are small and non-ferromagnetic. Conventional location techniques use ionizing radiation, posing health risks while the procedures often last several hours and end unsuccessfully. The use of high sensitivity magnetometers provides a noninvasive and innocuous alternative for metallic foreign body location. The developed technique consists of a primary AC magnetic field generator (a solenoid) inducing eddy currents in nonferromagnetic metallic foreign bodies, which results in an ultra-low secondary magnetic field that can be measured. This work compares the initially developed theoretical technique using Superconducting Quantum Interference Device (SQUID) magnetometers with the developed prototypes using lower cost alternatives, namely Giant Magnetoresistance (GMR) and Giant Magnetoimpedance (GMI). The comparison is based on biomedical device requirements for widespread clinical application. The proposed GMI location system is deemed the most qualified for clinical use.
In this paper the design of a magnetic-field-to-voltage transducer based on the giant magnetoimpedance phenomenon (GMI) is proposed, characterized by an innovative geometric configuration. In order to attain the best near-field sensibility and far-field immunity, the transducer's sensitive element and electronic circuit were planned and implemented. By thoroughly characterizing them it was possible to obtain an estimate of the transducer's sensibility, which is approximately 12 V Oe −1 . This value is comparable to those observed in two of the most important existing magnetic sensors: the fluxgate and the Hall effect sensor. The main application of the developed transducer is the localization of magnetic foreign bodies in humans, based on a previously developed and tested SQUID sensor technique. In order to provide a better interpretation of the experimental results, a theoretical model of the magnetic field associated with a needle and of the signal it generates in the transducer was created. Measurements with a needle were performed to analyze the behavior of the prototype, which has a high sensitivity, as expected, but presents strong hysteresis, lack of linearity and low immunity to uniform fields. However, despite the improvements that can still be done and have already been identified, the developed transducer has many promising applications, and has the advantage of reduced fabrication and operation costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.