Wave monitoring is a time consuming and costly endeavour which, despite best e orts, can be subject to occasional periods of missing data. This paper investigates the application of machine learning to create "virtual" wave height (Hs), period (Tz) and direction (Dp) parameters. Two supervised machine learning algorithms were applied using long term wave parameter datasets sourced from four wave monitoring stations in relatively close geographic proximity. The machine learning algorithms demonstrated reasonable performance for some parameters through testing, with Hs performing best overall followed closely by Tz; Dp was the most challenging to predict and performed relatively the poorest. The creation of such "virtual" wave monitoring stations could be used to hindcast wave conditions, fill observation gaps or extend data beyond that collected by the physical instrument.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/GM3EG2_SQa0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.