Four related quaternary compounds containing rare‐earth metals have been synthesized employing the molten flux method and metathesis. The reactions of Eu and Rb2S5 with Si and Ge in evacuated fused silica ampoules at 725 °C for 150 h yielded RbEuSiS4 (I) and RbEuGeS4 (II), respectively. On the other hand, a reaction between CeCl3 and K4Ge4Se10 at 650 °C for 148 h has yielded KCeGeSe4 (III) and KPrSiSe4(IV) was obtained by the reaction of elemental Pr, Si and Se in KCl flux at 850 °C for 168 h. Crystal data for these compounds are as follows: I, orthorhombic, space group P212121 (#19), a = 6.392(1), b = 6.634(2), c = 17.001(3) Å, α = β = γ = 90°, Z = 4; II, monoclinic, space group P21/m (#11), a = 6.498(2), b = 6.689(3), c = 8.964(3) Å, β = 108.647(6)°, Z = 2; III, monoclinic, space group P21 (#4), a = 6.852(2), b = 7.025(2), c = 9.017(3) Å, β = 108.116(2)°, Z = 2; IV, monoclinic, space group P21 (#4), a = 6.736(2), b = 6.943(2), c = 8.990(1) Å, β = 108.262(2)°, Z = 2. The crystal structures of I‐IV contain two‐dimensional corrugated anionic layers of the general formula, [LnEQ4]− (Ln = Ce, Pr, Eu; E = Si, Ge and Q = S, Se) alternately piled upon layers of alkali cations. In addition to structural elucidation, Raman and UV‐visible spectroscopy, and magnetic measurements for compound III (KCeGeSe4) are also discussed.