Kimberlite magmas have the deepest origin of all terrestrial magmas and are exclusively associated with cratons. During ascent, they travel through about 150 kilometres of cratonic mantle lithosphere and entrain seemingly prohibitive loads (more than 25 per cent by volume) of mantle-derived xenoliths and xenocrysts (including diamond). Kimberlite magmas also reputedly have higher ascent rates than other xenolith-bearing magmas. Exsolution of dissolved volatiles (carbon dioxide and water) is thought to be essential to provide sufficient buoyancy for the rapid ascent of these dense, crystal-rich magmas. The cause and nature of such exsolution, however, remains elusive and is rarely specified. Here we use a series of high-temperature experiments to demonstrate a mechanism for the spontaneous, efficient and continuous production of this volatile phase. This mechanism requires parental melts of kimberlite to originate as carbonatite-like melts. In transit through the mantle lithosphere, these silica-undersaturated melts assimilate mantle minerals, especially orthopyroxene, driving the melt to more silicic compositions, and causing a marked drop in carbon dioxide solubility. The solubility drop manifests itself immediately in a continuous and vigorous exsolution of a fluid phase, thereby reducing magma density, increasing buoyancy, and driving the rapid and accelerating ascent of the increasingly kimberlitic magma. Our model provides an explanation for continuous ascent of magmas laden with high volumes of dense mantle cargo, an explanation for the chemical diversity of kimberlite, and a connection between kimberlites and cratons.
a b s t r a c tWe present a descriptive genetic classification scheme and accompanying nomenclature for glaciovolcanic edifices herein defined as tuyas: positive-relief volcanoes having a morphology resulting from ice confinement during eruption and comprising a set of lithofacies reflecting direct interaction between magma and ice/melt water. The combinations of lithofacies within tuyas record the interplay between volcanic eruption and the attending glaciohydraulic conditions. Although tuyas can range in composition from basaltic to rhyolitic, many of the characteristics diagnostic of glaciovolcanic environments are largely independent of lava composition (e.g., edifice morphology, columnar jointing patterns, glass distributions, pyroclast shapes). Our classification consolidates the diverse nomenclature resulting from early, isolated contributions of geoscientists working mainly in Iceland and Canada and the nomenclature that has developed subsequently over the past 30 years. Tuya subtypes are first recognized on the basis of variations in edifice-scale morphologies (e.g., flat-topped tuya) then, on the proportions of the essential lithofacies (e.g., lava-dominated flat-topped tuya), and lastly on magma composition (e.g., basaltic, lavadominated, flat-topped tuya). These descriptive modifiers potentially supply additional genetic information and we show how the combination of edifice morphologies and lithofacies can be directly linked to general glaciohydraulic conditions. We identify nine distinct glaciovolcanic model edifices that potentially result from the interplay between volcanism and glaciohydrology. Detailed studies of tuya types are critical for recovering paleo-environmental information through geological time, including: ice sheet locations, extents, thicknesses, and glaciohydraulics. Such paleo-environmental information represents a new, innovative, underutilized resource for constraining global paleoclimate models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.