In many sequential decision-making problems we may want to manage risk by minimizing some measure of variability in rewards in addition to maximizing a standard criterion. Variance related risk measures are among the most common risk-sensitive criteria in finance and operations research. However, optimizing many such criteria is known to be a hard problem. In this paper, we consider both discounted and average reward Markov decision processes. For each formulation, we first define a measure of variability for a policy, which in turn gives us a set of risk-sensitive criteria to optimize. For each of these criteria, we derive a formula for computing its gradient. We then devise actor-critic algorithms that operate on three timescales-a TD critic on the fastest timescale, a policy gradient (actor) on the intermediate timescale, and a dual ascent for Lagrange multipliers on the slowest timescale. In the discounted setting, we point out the difficulty in estimating the gradient of the variance of the return and incorporate simultaneous perturbation approaches to alleviate this. The average setting, on the other hand, allows for an actor update using compatible features to estimate the gradient of the variance. We establish the convergence of our algorithms to locally risk-sensitive optimal policies. Finally, we demonstrate the usefulness of our algorithms in a traffic signal control application.
The classic objective in a reinforcement learning (RL) problem is to find a policy that minimizes, in expectation, a long-run objective such as the infinite-horizon discounted or long-run average cost. In many practical applications, optimizing the expected value alone is not sufficient, and it may be necessary to include a risk measure in the optimization process, either as the objective or as a constraint. Various risk measures have been proposed in the literature, e.g., mean-variance tradeoff, exponential utility, the percentile performance, value at risk, conditional value at risk, prospect theory and its later enhancement, cumulative prospect theory. In this article, we focus on the combination of risk criteria and reinforcement learning in a constrained optimization framework, i.e., a setting where the goal to find a policy that optimizes the usual objective of infinite-horizon discounted/average cost, while ensuring that an explicit risk constraint is satisfied. We introduce the risk-constrained RL framework, cover popular risk measures based on variance, conditional value-at-risk and cumulative prospect theory, and present a template for a risk-sensitive RL algorithm. We survey some of our recent work on this topic, covering problems encompassing discounted cost, average cost, and stochastic shortest path settings, together with the aforementioned risk measures in a constrained framework. This non-exhaustive survey is aimed at giving a flavor of the challenges involved in solving a risk-sensitive RL problem, and outlining some potential future research directions.Markov decision processes (MDPs) [1] provide a general framework for modeling a wide range of problems involving sequential decision making under uncertainty, which arise in many areas of applications, such as transportation, computer/communication systems, manufacturing, and supply chain management.MDPs transition from state to state probabilistically over time due to chosen actions taken by the decision maker, incurring state/action-dependent costs/rewards at each instant. The goal is to find a policy (sequence of decision rules) for choosing actions that optimizes a long-run objective function, e.g., the cumulative sum of discounted costs or the long-run average cost.The traditional MDP setting assumes that (i) the transition dynamics (probabilities) are fully specified, and (ii) the objective function and constraints involve standard expected value criteria. * prashla@cse.iitm.ac.in
We study a risk-constrained version of the stochastic shortest path (SSP) problem, where the risk measure considered is Conditional Value-at-Risk (CVaR). We propose two algorithms that obtain a locally risk-optimal policy by employing four tools: stochastic approximation, mini batches, policy gradients and importance sampling. Both the algorithms incorporate a CVaR estimation procedure, along the lines of Bardou et al. [2009], which in turn is based on Rockafellar-Uryasev's representation for CVaR and utilize the likelihood ratio principle for estimating the gradient of the sum of one cost function (objective of the SSP) and the gradient of the CVaR of the sum of another cost function (in the constraint of SSP). The algorithms differ in the manner in which they approximate the CVaR estimates/necessary gradients -the first algorithm uses stochastic approximation, while the second employ mini-batches in the spirit of Monte Carlo methods. We establish asymptotic convergence of both the algorithms. Further, since estimating CVaR is related to rare-event simulation, we incorporate an importance sampling based variance reduction scheme into our proposed algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.