Myosin light chain (P-LC) phosphorylation, which is thought to be the principle mechanism for twitch potentiation in skeletal muscle, is significantly decreased during staircase in fatigued muscle. Attenuated phosphorylation of P-LC could be due to either depressed Ca2+ transients in fatigue, or to some inhibitory influence of contractile activity on myosin light chain kinase (MLCK). Tetanic stimulation, which would presumably result in maximal activation of MLCK, could be used to evaluate these potential mechanisms. P-LC phosphorylation and twitch developed tension (DT) were assessed at 20 and 120 s following a tetanic contraction in either rested or fatigued rat gastrocnemius muscle in situ. P-LC phosphorylation was significantly lower in fatigued muscles (39.7 +/- 3.2% vs 54.8 +/- 3. 5%, 20 s after a 2-s tetanic contraction), while posttetanic potentiation (PTP) was similar in fatigued (189.1 +/- 6.5%) versus rested muscle (169.5 +/- 2.6%). Tetanic DT was reduced following the fatigue protocol and, thus, the assumption that the MLCK system was fully activated by Ca2+ may not be valid. The potentiation-phosphorylation relationships were linear for both rested and fatigued muscles; however this relationship was shifted markedly leftward in fatigued muscles. It appears that during PTP, equivalent potentiation is attained with correspondingly lower levels of P-LC phosphorylation in fatigued muscle. This enhanced relative potentiation for a given level of phosphorylation could be expected if Ca2+ transients were attenuated in the fatigued muscle. However the results do not rule out the possibility that other factors contribute to potentiation under these circumstances.
Previously we have demonstrated that the absence of staircase potentiation in atrophied rat gastrocnemius muscle is accompanied by a virtual absence of phosphorylation of the regulatory light chains (R-LC) of myosin. It was our purpose in the present study to determine if posttetanic potentiation and corresponding R-LC phosphorylation were also attenuated in disuse-atrophied muscles. Two weeks after a spinal hemisection (T12), twitch and tetanic contractile characteristics were measured in situ in control, sham-treated and atrophied (hemisected) muscles. Posttetanic potentiation 20 s after a 2 s tetanic contraction (200 Hz) was depressed in atrophied muscles (128.7 +/- 2.6%; mean +/- SEM) when compared to sham-treated (149.9 +/- 2.4%) and control (142.9 +/- 2. 7%) muscles. Atrophied muscles demonstrated a significant increase in R-LC phosphorylation from rest (0.05 +/- 0.04 moles of phosphate/mole of R-LC) to posttetanic conditions (0.21 +/- 0.03 moles of phosphate/mole of R-LC), and less phosphorylation than control and sham-treated muscles (0.43 +/- 0.06 and 0.49 +/- 0.03 moles of phosphate/mole of R-LC, respectively) after tetanic stimulation. The preservation of the potentiation-phosphorylation relationship in atrophied muscles is consistent with the hypothesis that R-LC phosphorylation may be the principal mechanism for twitch potentiation.
Changes in muscle length affect the degree of staircase potentiation in skeletal muscle, but the mechanism by which this occurs is unknown. In this study, we tested the hypothesis that length-dependent change in staircase is modulated by phosphorylation of the myosin regulatory light chains (RLC), since this is believed to be the main mechanism of potentiation. In situ isometric contractile responses of rat gastrocnemius muscle during 10 s of repetitive stimulation at 10 Hz were analyzed at optimal length (Lo), Lo - 10%, and Lo + 10%. The degree of enhancement of developed tension during 10 s of repetitive stimulation was observed to be length dependent, with increases of 118.5 +/- 7.8, 63.1 +/- 3.9, and 45.6 +/- 4.1% (means +/- SE) at Lo - 10%, Lo, and Lo + 10%, respectively. Staircase was accompanied by increases in the average rate of force development of 105.6 +/- 7.7, 55.6 +/- 4.1, and 37.2 +/- 4.4% for Lo - 10%, Lo, and Lo + 10%, respectively. RLC phosphorylation after 10 s of 10-Hz stimulation was higher than under resting conditions but not different among Lo - 10% (40 +/- 3.5%), Lo (35 +/- 3.5%), and Lo + 10% (41 +/- 3.5%). This study shows that there is a length dependence of staircase potentiation in mammalian skeletal muscle that may not be directly modulated by RLC phosphorylation. Interaction of RLC phosphorylation with length-dependent changes in Ca2+ release and intermyofilament spacing may explain these observations.
In disuse atrophied skeletal muscle, the staircase response is virtually absent and light chain phosphorylation does not occur. The purpose of the present study was to determine if staircase could be restored in atrophied muscle with continued absence of myosin light chain phosphorylation, by reducing what appears to be an otherwise enhanced calcium release. Control (untreated) and sham-operated female Sprague-Dawley rats were compared with animals after 2 weeks of complete inactivity induced by tetrodotoxin (TTX) application to the left sciatic nerve. In situ isometric contractile responses of rat gastrocnemius muscle were analyzed before and after administration of dantrolene sodium (DS), a drug which is known to inhibit Ca 2+ release in skeletal muscle. Twitch active force (AF) was attenuated by DS from 2.2 ± 0.2 N, 2.7 ± 0.1 N and 2.4 ± 0.2 N to 0.77 ± 0.2 N, 1.05 ± 0.1 N and 1.01 ± 0.2 N in TTX (N = 5), sham (N = 11) and control (N = 7) muscles, respectively. Following dantrolene treatment, 10 s of 10-Hz stimulation increased AF to 1.32 ± 0.2 N, 1.52 ± 0.1 N and 1.45 ± 0.2 N for the TTX, sham and control groups, respectively, demonstrating a positive staircase response. Regulatory light chain (R-LC) phosphorylation was lower for TTX-treated (5.5 ± 5.5%) than for control (26.1 ± 5.3%) and sham (20.0 ± 5%) groups. There was no significant change from resting levels for any of the groups after DS treatment (P = 0.88). This study shows that treatment with dantrolene permits staircase in atrophied muscle as well as control muscle, by a mechanism which appears to be independent of R-LC phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.