Abstract. Separable Hamiltonian systems of differential equations have the form dp/dt = -dH/dq, dq/dt = dH/dp, with a Hamiltonian function H that satisfies H = T(p) + K(q) (T and V are respectively the kinetic and potential energies). We study the integration of these systems by means of partitioned Runge-Kutta methods, i.e., by means of methods where different Runge-Kutta tableaux are used for the p and q equations. We derive a sufficient and "almost" necessary condition for a partitioned Runge-Kutta method to be canonical, i.e., to conserve the symplectic structure of phase space, thereby reproducing the qualitative properties of the Hamiltonian dynamics. We show that the requirement of canonicity operates as a simplifying assumption for the study of the order conditions of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.