Summary 1Climate change in South Africa may threaten the sclerophyllous evergreen shrubs of this region. Available data suggest that they are not as tolerant of water stress as chaparral shrubs occurring in climatically similar California, USA. 2 Seventeen species from nine angiosperm families, including both fynbos and succulent karoo species, were studied at a field site in Western Cape Province, South Africa. Minimum seasonal pressure potential ( P min ), xylem specific conductivity ( K s ), stem strength against breakage (modulus of rupture, MOR), xylem density, theoretical vessel implosion resistance ( ) and several fibre and vessel anatomical traits were measured. 3 Species displayed great variability in P min , similar to the range reported for chaparral and karoo shrub species, but in contrast to previous reports for fynbos shrubs. 4 More negative P min was associated with having greater xylem density, MOR and . There was no relationship between P min and traits associated with increased water transport efficiency. 5 Xylem density integrates many xylem traits related to water stress tolerance, including P min , MOR and , as well as percentage fibre wall, parenchyma, vessel area and fibre lumen diameter. 6 Xylem density may be an integral trait for predicting the impact of climate change on evergreen shrubs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.