Adult rams were exposed to photoperiod treatments over 2 years to study the influence of light regimes on pituitary-testicular activity and semen quality. Initially, all rams (12 per group) were exposed to 3 months of long days (16L:8D). Group 1 was then exposed to a regime of continuous short days (8L:16D) and Groups 2, 3, and 4 were exposed to 4 months of short days alternated with 1, 2, or 4 months, respectively, of long days. Every 2 weeks, serum hormone levels and scrotal circumference were determined and semen quality was evaluated. Regular cycles in pituitary and testicular activities corresponding to the period of the lighting regime resulted in Groups 2, 3, and 4, but not in Group 1. In general, the change from long days to short days induced increases in follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone levels, scrotal size and sperm numbers and a decrease in prolactin. The reverse occurred after subsequent exposure to long days. After 4 months of long days, testicular regression was complete, but when long-day exposure was reduced, less regression occurred. With continuous exposure to short days, FSH and testosterone remained above basal levels, prolactin levels were depressed, scrotal size remained near the maximum, and elevated numbers of motile sperm were sustained.
Dispersed granulosa and theca interna cells were recovered from follicles of prepubertal gilts at 36, 72 and 108 h after treatment with 750 i.u. PMSG, followed 72 h later with 500 i.u. hCG to stimulate follicular growth and ovulation. In the absence of aromatizable substrate, theca interna cells produced substantially more oestrogen than did granulosa cells. Oestrogen production was increased markedly in the presence of androstenedione and testosterone in granulosa cells but only to a limited extent in theca interna cells. The ability of both cellular compartments to produce oestrogen increased up to 72 h with androstenedione being the preferred substrate. Oestrogen production by the two cell types incubated together was greater than the sum produced when incubated alone. Theca interna cells were the principal source of androgen, predominantly androstenedione. Thecal androgen production increased with follicular development and was enhanced by addition of pregnenolone or by LH 36 and 72 h after PMSG treatment. The ability of granulosa and thecal cells to produce progesterone increased with follicular development and addition of pregnenolone. After exposure of developing follicles to hCG in vivo, both cell types lost their ability to produce oestrogen. Thecal cells continued to produce androgen and progesterone but no longer responded to LH in vitro. These studies indicate that several functional changes in the steroidogenic abilities of the granulosa and theca interna compartments occur during follicular maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.