In this paper we present results of structural studies of compacting experimental systems of ductile grains in two and three dimensions. The high precision of our two-dimensional experiments enables a detailed study of the evolution of coordination numbers and local crystalline arrangements as a function of the packing fraction. The structure in both dimensions deviates considerably from that of hard disks and spheres, although geometrically, crystalline arrangements dominate on a local scale ͑in two dimensions͒. In three dimensions, the evolution of the coordination number is compared to experimental packings of hard and ductile grains from the literature. This comparison shows that the evolution of coordination number with packing fraction is not unique for ductile systems in general, but must depend on rheology and grain size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.