[1] We analyzed d 29 Si of dissolved silicate for eight water column profiles across the Southern Ocean (south of Australia in spring 2001) from the Seasonal Ice Zone (SIZ) north to the Subantarctic Zone (SAZ), including the first isotopic compositions measured for Si-depleted seawaters. All profiles display mixed layer enrichments in heavy Si isotopes relative to deep water in accordance with preferential uptake of the light isotope by diatoms. As silicate levels decrease from the SIZ northward across the Polar Front Zone (PFZ) to the SAZ, surface and mesopelagic d 29 Si signatures generally become progressively heavier, but the most Si-depleted SAZ waters do not exhibit d 29 Si values heavier than in the PFZ. This intricacy appears to derive from variations in the vertical and horizontal supply of silicate to surface waters, and by applying a steady state open system model, we estimate a fractionation factor, 29 e, between diatoms and seawater of À0.45 ± 0.17%, independently of zones and phytoplankton community. Though encouraging, these results are related to latitudinal changes in mesopelagic d 29 Si values, complexity in surface silicateÀd 29 Si correlations, and differences from previous studies, which underline the need for caution in the use of silicon isotopes in paleoceanographic studies until systematic efforts have been undertaken to better understand modern variations.
Abstract. In this work, the source of ambient particulate matter (PM10) collected over a one-year period at an urban background site in Lens (France) was determined and investigated using a positive matrix factorization receptor model (US EPA PMF v3.0). In addition, a potential source contribution function (PSCF) was performed by means of the Hybrid Single-Particle Lagrangian Integrated Trajectory (Hysplit) v4.9 model to assess prevailing geographical origins of the identified sources. A selective iteration process was followed for the qualification of the more robust and meaningful PMF solution. Components measured and used in the PMF included inorganic and organic species: soluble ionic species, trace elements, elemental carbon (EC), sugar alcohols, sugar anhydride, and organic carbon (OC). The mean PM10 concentration measured from March 2011 to March 2012 was about 21 μg m−3 with typically OM, nitrate and sulfate contributing to most of the mass and accounting respectively for 5.8, 4.5 and 2.3 μg m−3 on a yearly basis. Accordingly, PMF outputs showed that the main emission sources were (in decreasing order of contribution) secondary inorganic aerosols (28% of the total PM10 mass), aged marine emissions (19%), with probably predominant contribution of shipping activities, biomass burning (13%), mineral dust (13%), primary biogenic emissions (9%), fresh sea salts (8%), primary traffic emissions (6%) and heavy oil combustion (4%). Significant temporal variations were observed for most of the identified sources. In particular, biomass burning emissions were negligible in summer but responsible for about 25% of total PM10 and 50% of total OC in wintertime. Conversely, primary biogenic emissions were found to be negligible in winter but to represent about 20% of total PM10 and 40% of total OC in summer. The latter result calls for more investigations of primary biogenic aerosols using source apportionment studies, which quite usually disregard this type of source. This study further underlines the major influence of secondary processes during daily threshold exceedances. Finally, apparent discrepancies that could be generally observed between filter-based studies (such as the present one) and aerosol mass spectrometer-based PMF analyses (organic fractions) are also discussed.
PM10 source apportionment was performed by positive matrix factorization (PMF) using specific primary and secondary organic molecular markers on samples collected over a one year period (2013) at an urban station in Grenoble (France). The results provided a 9-factor optimum solution, including sources rarely apportioned in the literature, such as two types of primary biogenic organic aerosols (fungal spores and plant debris), as well as specific biogenic and anthropogenic secondary organic aerosols (SOA). These sources were identified thanks to the use of key organic markers, namely, polyols, odd number higher alkanes, and several SOA markers related to the oxidation of isoprene, -pinene, toluene and polycyclic aromatic hydrocarbons (PAHs). Primary and secondary biogenic contributions together accounted for at least 68% of the total organic carbon (OC) in the summer, while anthropogenic primary and secondary sources represented at least 71% of OC during wintertime. A very significant contribution of anthropogenic SOA was estimated in the winter during an intense PM pollution event (PM10 >50 µg m-3 for several days; 18% of PM10 and 42% of OC). Specific meteorological conditions with a stagnation of pollutants over 10 days and possibly Fenton-like chemistry and self-amplification cycle of SOA formation could explain such high anthropogenic SOA concentrations during this period. Finally, PMF outputs were also used to investigate the origins of humic-like substances (HuLiS), which represented 16% of OC on an annual average basis. The results indicated that HuLiS were mainly associated with biomass burning (22%), secondary inorganic (22%), mineral dust (15%) and biogenic SOA (14%) factors. This study is probably the first to state that HuLiS are significantly associated with mineral dust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.