Lockdown measures were initiated in Italy on March 9th after the start of the SARS-CoV-2 epidemic to flatten the epidemic curve. The aim of the present study was to assess the impact of restrictive measures in the Apulia Region, southern Italy, on air quality from March to April 2020. We applied a dual-track approach. We assessed citizen mobility and vehicle traffic with mobility network data and information obtained from satellite tracking, and we evaluated and compared pollutant concentration data as measured by monitoring stations maintained by the Regional Agency for Environmental Protection and Prevention of Apulia (ARPA). The results showed a decrease in the weekly mean NO2 concentration recorded by urban traffic stations during the lockdown period. In particular, in the city of Bari, the average NO2 concentration decreased from 62.2 μg/m3 in March 2019 to 48.2 μg/m3 in March 2020. Regarding PM10 levels, the average concentrations at the individual traffic stations showed no particular variation compared to those in the same months of the previous year, except for Bari-Caldarola Station in March 2019/2020 (p-value < 0.001) and in April 2019/2020 (p-value = 0.04). In particular the average in March 2019 was ~26.9 μg/m3, while that in March 2020 was ~22.9 μg/m3. For April, the average concentration of PM10 in 2019 was 27.9 μg/m3, while in 2020, the average was ~22.4 μg/m3. This can be explained by the fact that PM10 levels are influenced by multiple variables such as weather and climate conditions and desert dust advections.
In the framework of the Italian Special Network for Mercury (ISNM) “Reti Speciali”, a sampling campaign to monitor atmospheric mercury (Hg) was carried out at Monte Sant’Angelo (MSA). This is a coastal monitoring station in the Apulia region, representative of the Southern Adriatic area, within the Mediterranean basin. This work presents continuous Gaseous Elemental Mercury (GEM) measurements over about three years at MSA, using the Lumex RA-915AM mercury analyzer. The aim was to obtain a dataset suitable for the analysis of Hg concentrations in terms of source and transport variation. Diurnal cycles of GEM were evaluated to observe the influence of local atmospheric temperature and wind speed on potential re-emissions from surrounding sea and soil surfaces. Data were also analyzed in terms of long-range transport, using backward trajectory cluster analysis. The spatial distribution of potential sources, contributing to higher measured GEM values, was obtained employing Potential Source Contribution Function (PSCF) statistics. The influence of major Hg anthropogenic point sources, such as mining activities and coal-fuel power plants, both regionally and continentally, from mainland Europe, was observed. The role of the vegetation GEM uptake in modulating the seasonal GEM variability was also investigated. The potential of wildfire influence over the highest detected GEM levels was further examined using active fire data and the evaluation of the vegetation dryness index during the selected episodes. Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.