In this work, the Renyi holographic dark energy (RHDE)and its behaviour has been explored with the anisotropic and spatially homogeneous Bianchi type-I Universe in the framework of f (G) gravity. We use IR cutoff as the Hubble and Granda-Oliveros (GO) horizons. To find a consistent solutions of the field equations of the models, it is assumed that the deceleration parameter is defined in terms of function of Hubble parameter H. With reference to current cosmological data, the behaviors of the cosmological parameters relating to the dark energy model are evaluated and their physical significance is examined. It is observed that for both the models, the equation of state parameter approaches to −1 at late times. However, the RHDE model with the Hubble horizon exhibits stability from the squared sound speed, but the RHDE model with the GO horizon exhibits instability. In both the models, deceleration parameter and statefinder diagnostic confirm the accelerated expansion of the Universe and also correspond to the ΛCDM model at late times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.