An experiment was performed using the PALS laser to study laser-target coupling and laser-plasma interaction in an intensity regime 1016 W/cm2, relevant for the “shock ignition” approach to Inertial Confinement Fusion. A first beam at low intensity was used to create an extended preformed plasma, and a second one to create a strong shock. Pressures up to 90 Megabars were inferred. Our results show the importance of the details of energy transport in the overdense region
Laser–plasma interaction (LPI) at intensities $10^{15}{-}10^{16}~\text{W}\cdot \text{cm}^{-2}$ is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity ${\sim}1.2\times 10^{16}~\text{W}\cdot \text{cm}^{-2}$ with a ${\sim}100~\unicode[STIX]{x03BC}\text{m}$ scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature ( ${\sim}4~\text{keV}$ ) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.