Milk-clotting enzyme is considered largely denatured after the cooking step in hard cheeses. Nevertheless, typical hydrolysis products derived from rennet action on alpha(s1)-casein have been detected during the ripening of hard cheeses. The aim of the present work was to investigate the influence of residual milk-clotting enzyme on alpha(s1)-casein hydrolysis in Reggianito cheeses. For that purpose, we studied the influence of cooking temperature (45, 52, and 60 degrees C) on milk-clotting enzyme residual activity and alpha(s1)-casein hydrolysis during ripening. Milk-clotting enzyme residual activity in cheeses was assessed using a chromatographic method, and the hydrolysis of alpha(s1)-casein was determined by electrophoresis and high performance liquid chromatography. Milk-clotting enzyme activity was very low or undetectable in 60 degrees C- and 52 degrees C-cooked cheeses at the beginning of the ripening, but it increased afterwards, particularly in 52 degrees C-cooked cheeses. Cheese curds that were cooked at 45 degrees C had higher initial milk clotting activity, but also in this case, there was a later increase. Hydrolysis of alpha(s1)-casein was detected early in cheeses made at 45 degrees C, and later in those made at higher temperatures. The peptide alpha(s1)-I was not detected in 60 degrees C-cooked cheeses. The results suggest that residual milk-clotting enzyme can contribute to proteolysis during ripening of hard cheeses, because it probably renatures partially after the cooking step. Consequently, the production of peptides derived from alpha(s1)-casein in hard cheeses may be at least, partially due to this proteolytic agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.