Copy-number variations (CNVs) are a common cause of intellectual disability and/or multiple congenital anomalies (ID/MCA). However, the clinical interpretation of CNVs remains challenging, especially for inherited CNVs. Well-phenotyped patients (5,531) with ID/MCA were screened for rare CNVs using a 250K single-nucleotide polymorphism array platform in order to improve the understanding of the contribution of CNVs to a patients phenotype. We detected 1,663 rare CNVs in 1,388 patients (25.1%; range 0-5 per patient) of which 437 occurred de novo and 638 were inherited. The detected CNVs were analyzed for various characteristics, gene content, and genotype-phenotype correlations. Patients with severe phenotypes, including organ malformations, had more de novo CNVs (P < 0.001), whereas patient groups with milder phenotypes, such as facial dysmorphisms, were enriched for both de novo and inherited CNVs (P < 0.001), indicating that not only de novo but also inherited CNVs can be associated with a clinically relevant phenotype. Moreover, patients with multiple CNVs presented with a more severe phenotype than patients with a single CNV (P < 0.001), pointing to a combinatorial effect of the additional CNVs. In addition, we identified 20 de novo single-gene CNVs that directly indicate novel genes for ID/MCA, including ZFHX4, ANKH, DLG2, MPP7, CEP89, TRIO, ASTN2, and PIK3C3.
The clinical presentation of these patients has clear similarities with previously reported cases with a terminal 1q deletion. Corpus callosum abnormalities were present in 10 of our patients. The AKT3 gene has been reported as an important candidate gene causing this abnormality. However, through detailed molecular analysis of the deletion sizes in our patient cohort, we were able to delineate the critical region for corpus callosum abnormalities to a 360 kb genomic segment which contains four possible candidate genes, but excluding the AKT3 gene.
The characteristic clinical features of the dup(3q) syndrome include typical facial features, mental and growth retardation, and (often) congenital heart anomalies. However, pure duplication of 3qter is rare because most of the reported cases are patients who carry an unbalanced translocation and, in addition to the duplication for 3qter, have a deletion for another chromosomal segment. A new case with a pure duplication of 3q detected in a 2-month-old boy is presented here. Extensive cytogenetic analysis revealed an inverted duplication of the distal part of 3q (chromosomal band 3q26.3 up to the telomere), with no (detectable) loss of the original telomeric sequences. Clinical evaluation revealed several phenotypic hallmarks characteristic for the dup(3q) syndrome. By comparing the duplicated region of this patient with the duplicated regions of the other patients with a pure duplication of 3q, we were able to localize the critical region for the dup(3q) phenotype to band 3q26.3. Alongside this new case with a pure duplication of 3q, an overview of six previous cases is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.