The aim of this work was to evaluate the effects of therapeutic doses of Cimicifuga racemosa on cardiovascular parameters and on liver lipid metabolism and redox status in an animal model of estrogen deficiency associated with hypertension, a condition that could make the liver more vulnerable to drug-induced injuries. Female Wistar rats were subjected to the surgical procedures of bilateral ovariectomy (OVX) and induction of renovascular hypertension (two-kidneys, one-clip; 2K1C). These animals (OVX + 2K1C) were treated with daily doses of a C. racemosa extract, using a dose that is similar to that recommended to postmenopausal women (0.6 mg/kg), over a period of 15 days. The results were compared to those of untreated OVX + 2K1C, OVX, and control rats. The treatment with C. racemosa caused a significant reduction in blood pressure. In the liver, treatment did not prevent the development of steatosis, and it reduced the mitochondrial and peroxisomal capacity to oxidize octanoyl-CoA compared to the untreated animals. In addition, C. racemosa caused numerous undesirable effects on the liver redox status: it increased the mitochondrial reactive oxygen species generation, an event that was not accompanied by an increase in the activity of superoxide dismutase, and it induced a decrease in peroxisomal catalase activity. Although the reduced glutathione content had not been affected, a phenomenon that probably reflected the restoration of glucose-6-phosphate dehydrogenase activity by C. racemosa, oxidative damage was evidenced by the elevated level of thiobarbituric acid-reactive substances found in the liver of treated animals.
Estrogen deficiency accelerates the development of several disorders including visceral obesity and hepatic steatosis. The predisposing factors can be exacerbated by drugs that affect hepatic lipid metabolism. The aim of the present work was to determine if raloxifene, a selective estrogen receptor modulator (SERM) used extensively by postmenopausal women, affects hepatic fatty acid oxidation pathways. Fatty acids oxidation was measured in the livers, mitochondria and peroxisomes of ovariectomized (OVX) rats. Mitochondrial and peroxisomal β-oxidation was inhibited by raloxifene at a concentration range of 2.5-25 μM. In perfused livers, raloxifene reduced the ketogenesis from endogenous and exogenous fatty acids and increased the β-hydroxybutyrate/acetoacetate ratio. An increase in ¹⁴CO₂ production without a parallel increase in the oxygen consumption indicated that raloxifene caused a diversion of NADH from the mitochondrial respiratory chain to another oxidative reaction. It was found that raloxifene has a strong ability to react with H₂O₂ in the presence of peroxidase. It is likely that the generation of phenoxyl radical derivatives of raloxifene in intact livers led to the co-oxidation of NADH and a shift of the cellular redox state to an oxidised condition. This change can perturb other important liver metabolic processes dependent on cellular NADH/NAD⁺ ratio.
Estrogen deficiency is associated with aging and increases the incidence of metabolic syndrome and hypertension. In this study, the effects of tibolone, a synthetic steroid, on the cardiovascular system, liver lipid metabolism, and redox status were evaluated, in ovariectomized (OVX) rats with renovascular hypertension (two-kidneys, one-clip, OVX + 2K1C). This study encompassed direct measurements of mean arterial pressure , plasma biochemical analysis, liver lipid contents, and assessments of the mitochondrial and peroxisomal β-oxidation capacities. Additionally, the liver redox status was assayed. Tibolone significantly reduced the mean arterial pressure of OVX + 2K1C rats, albeit reducing total and high-density lipoprotein (HDL) cholesterol levels. In the liver, although exerting an undesirable inhibition of mitochondrial and peroxisomal β-oxidation, tibolone reversed steatosis. Tibolone also improved the liver redox status: the reduced glutathione contents and the activity of glucose-6-phosphate dehydrogenase were restored by this compound, which also reduced the levels of thiobarbituric acid-reactive substances and the generation of mitochondrial reactive oxygen species. So, tibolone reversed the main alterations caused by hypertension and estrogen deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.