We present here the first in vivo optical coherence tomography (OCT) images of human dental tissue. A novel dental optical coherence tomography system has been developed. This system incorporates the interferometer sample arm and transverse scanning optics into a handpiece that can be used intraorally to image human dental tissues. The average imaging depth of this system varied from 3 mm in hard tissues to 1.5 mm in soft tissues. We discuss the application of this imaging system for dentistry and illustrate the potential of our dental OCT system for diagnosis of periodontal disease, detection of caries, and evaluation of dental restorations.
Optical coherence tomography is a new method for noninvasively imaging internal tooth and soft tissue microstructure. The intensity of backscattered light is measured as a function of depth in the tissue. Low coherence interferometry is used to selectively remove the component of backscattered signal that has undergone multiple scattering events, resulting in very high resolution images (< 15 microns). Lateral scanning of the probe beam across the biological tissue is then used to generate a 2-D intensity plot, similar to ultrasound images. This imaging method provides information that is currently unobtainable by any other means, making possible such diverse applications as diagnosis of periodontal disease, caries detection, and evaluation of restoration integrity. This chapter presents an overview of this exciting new imaging technique and its current application to dental diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.