We studied the effect of different levels of membrane-bound hemoglobin on the level of red-cell membrane proteins and also their interrelation in patients with essential hypertension with and without metabolic syndrome. It was found that high membrane-bound hemoglobin is closely related to the low level of high-density lipoproteins and high level of low-density lipoproteins in patients with essential hypertension complicated with metabolic syndrome. In patients with essential hypertension not complicated with metabolic syndrome high membrane-bound hemoglobin is related to the increased prothrombin time and decreased blood urea nitrogen. In patients with essential hypertension com-plicated with metabolic syndrome high membrane-bound hemoglobin significantly influences the level of membrane contractile proteins (actin, tropomiosine). In patients with essential hypertension without metabolic syndrome high membrane-bound hemoglobin is accompanied by the decrease of structural and integral membrane proteins levels (anion-transport protein and protein 4.1). As the result of quantitative changes in these proteins and change in their interrelations in patients with ssential hypertension complicated with metabolic syndrome more intensive disorders of structural and functional organization of red-cell membrane can appear.
We studied specific features of erythrocyte membrane response to short-term occlusion of the brachial artery in patients with cardiovascular pathology. Under ischemic conditions, processes of sorption were primarily intensified in patients with effort angina and processes of hemoglobin binding with erythrocyte membrane predominated in patients with essential hypertension. These changes in the cell membrane were related to modulation of aggregation properties of erythrocytes (in patients with angina) and plasminogen activity (in patients with essential hypertension). They can also be associated with changes in glucose levels (effort angina) and uric acid (essential hypertension) whose effects can be significantly modified by other endogenous factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.