Oxides RBa2Cu3O6+δ(R=Y, Nd) subjected to mechanical activation in AGO-2 mill have been studied by X-ray photoelectron spectroscopy (XPS), thermal analysis, and magnetometry. It has been shown that mechanoactivation accelerates chemical degradation under the impact of H2O and CO2in YBa2Cu3O6+δsamples. Degradation occurs in the standard way. Investigation of mechanically activated NdBa2Cu3O6+δhas revealed other results. It has been suggested that CO2can diffuse into its structure more freely than in YBa2Cu3O6+δ; as a result, carbonization may proceed directly in the volume of NdBa2Cu3O6+δand independently of the hydrolysis process. In addition, the mechanism of interaction between the oxide and water is not active and not “traditional” for the homologous series REBa2Cu3O6+δ(where RE = rare earth and Y)—the characteristic “color” phase (Nd2BaCuO5) is not formed during hydrolysis. It is known that high-temperature treatment of NdBa2Cu3O6+δoxide results in partial substitution of cations Ba by Nd; which is accompanied by decrease in the superconducting transition temperature and formation of the impurity phase Ba2Cu3O5+y. According to our data, mechanical activation of the resulting solid solution Nd1+xBa2−xCu3O6+δunexpectedly has led to the reverse redistribution of cations, which has been manifested in the complete disappearance of the impurity phase and increase inTc.
The processes of iron oxides’ reduction have a complex physicochemical mechanism, with the participation of solid, liquid, and gaseous substances. The article discusses the existing models for the reduction of iron oxides and provides data on the thermodynamic possibility of carrying out the reactions of their reduction through the solid and gas phases. Experimental data on the reduction of iron from industrial scale, obtained by the DSC (differential scanning calorimetry) method, show the kinetic dependence of the rate and completeness of recovery on external factors: pressing pressure during sample preparation and the reagents’ composition. The pressing pressure, under conditions of iron ions’ solid-phase diffusion, has the significant effect by increasing the reagents’ contact area. Under conditions of iron ions’ comprehensive diffusion, the pressing pressure does not affect the reduction processes rate. The introduction of 10 mass.% flux into the raw mixture composition leads to a partially liquid-phase diffusion of iron ions and weakens the effect of the pressing pressure in this process. An ion diffusion-catalytic mechanism is proposed to describe the observed effects during the reduction of iron oxide of technogenic origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.