Globe artichoke ( Cynara cardunculus L. var. scolymus L.) is a diploid (2 n=2 x=34), predominantly cross-pollinated plant native to the Mediterranean basin, and Italy contains the richest primary cultivated 'gene pool'. Commercial production is mainly based on perennial cultivation of vegetatively propagated clones that are highly heterozygous and segregate widely when progeny-tested. Analysis of the artichoke genome by means of molecular markers has been limited to a few studies; here we report on the genetic relatedness among 118 artichoke accessions, including clones belonging to the same varietal type, two accessions of cultivated cardoon ( C. cardunculus L. var. altilis DC.) and four accessions of wild cardoon [ C. cardunculus L. var. sylvestris (Lamk) Fiori] as measured by amplified fragment length polymorphism (AFLP). Eight primer combinations yielded a total of 667 bands, of which 519 were polymorphic. Genetic similarities among accessions were calculated according to Jaccard's Similarity Index and used to construct a dendrogram based on the unweighted pair group method using arithmetic averages. Our results demonstrate that AFLP markers can be useful in evaluating Cynara cardunculus genetic diversity and in classifying accessions to phylogenetic groups based on their genetic similarity values. Genetic variation among artichoke clones belonging to the same varietal type was in some cases higher than that found among accessions differently named and coming from different areas. The lowest Jaccard's Similarity Index found within a varietal type can be considered as a threshold for the identification of accessions which share an analogous genetic background. This will enable the selection of representatives in order to develop and manage a germplasm 'core collection' as well as the identification of suitable material for future artichoke breeding efforts.
The aim of this study was to develop a technique easy to apply in order to induce seed-tuber dormancy breakage. Over a two-year study, more than seven dormancy-breaking treatments were tested through evaluating different temperature effects alone or combined with gibberellins application, cutting in half of seed-tubers, and early haulm killing. Three varieties per year were considered: Spunta and Monalisa (medium and long dormancy) in both years, Europa during the first year and Arinda during the second year (both characterized by a short dormancy period). We found firstly that Europa and Arinda promptly responded to thermal treatments, and secondly to the same thermal treatments in combination with the application of gibberellins. Although not easily applicable, especially when a large volume of seed-tubers has to be handled (seed-tuber producers), the cutting in half of the seed-tubers also had a satisfactory result. Notwithstanding that treatments did not perfectly overlap between the two experiments, results were qualitatively similar. Therefore, these findings allow us to conclude that treatment with post-harvest storage at 20 °C, followed by a treatment with gibberellic acid at 38 days from harvesting, is the most efficient in releasing dormancy, in ensuring a good vegetative growth and productive performance at field-level irrespective of the variety.
The knowledge of the organization of the domesticated gene pool of crop species is an essential requirement to understand crop evolution, to rationalize conservation programs, and to support practical decisions in plant breeding. Here, we integrate simple sequence repeat (SSR) analysis and phenotypic characterization to investigate a globe artichoke collection that comprises most of the varieties cultivated worldwide. We show that the cultivated gene pool of globe artichoke includes five distinct genetic groups associated with the major phenotypic typologies: Catanesi (which based on our analysis corresponds to Violetti di Provenza), Spinosi, Violetti di Toscana, Romaneschi, and Macau. We observed that 17 and 11% of the molecular and phenotypic variance, respectively, is between these groups, while within groups, strong linkage disequilibrium and heterozygote excess are evident. The divergence between groups for quantitative traits correlates with the average broad-sense heritability within the groups. The phenotypic divergence between groups for both qualitative and quantitative traits is strongly and positively correlated with SSR divergence (FST) between groups. All this implies a low population size and strong bottleneck effects, and indicates a long history of clonal propagation and selection during the evolution of the domesticated gene pool of globe artichoke. Moreover, the comparison between molecular and phenotypic population structures suggests that harvest time, plant architecture (i.e., plant height, stem length), leaf spininess, head morphology (i.e., head shape, bract shape, spininess) together with the number of heads per plant were the main targets of selection during the evolution of the cultivated germplasm. We emphasize our findings in light of the potential exploitation of this collection for association mapping studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.