In this work we present a low cost, minimally invasive, and chip-based near infrared (NIR) sensor, combined with subcutaneous microdialysis, for continuous glucose monitoring (CGM). The sensor principle is based on difference absorption spectroscopy in the 1st overtone band known to be dominated by glucose-specific absorption features. The device comprises a multi-emitter LED and InGaAs-photodiodes, which are located on a single electronic board (non-disposable part), connected to a personal computer via Bluetooth. The disposable part consists of a chip containing the fluidic connections for microdialysis, two fluidic channels acting as optical transmission cells and total internally reflecting mirrors for in- and out-coupling of the light to the chip and to the detectors. The use of the sensor in conjunction with a subcutaneous microdialysis catheter to separate the glucose from the cells and proteins has been demonstrated to be extremely useful and advantageous for obtaining continuous glucose monitoring data and detecting glycemic levels in real time for a long period. Several in vitro and in vivo experiments were conducted to test the reliability of the device. In vitro measurements showed a linear relationship between glucose concentration and the integrated difference signal with a coefficient of determination of 99 % at the physiological concentration range. Clinical trial on 6 subjects with Type 1 diabetes showed that the NIR-CGM sensor data reflects the blood reference values adequately, if a proper calibration and signal drift compensation is applied. The MARD (mean absolute relative difference) value taken on retrospective data over all subjects is 8.5 % (range 6-11.5 %).
The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough-cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.