In this work, we experimentally evaluate pH and SO4(2-) dynamics associated with abiotic and microbial S2O3(2-) oxidation under varying [O2], [Fe(III)] and microbial strain/consortia (two pure strains, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, their consortia, and two enrichments from an acidic environmental system, Moose Lake 2002 and Moose Lake 2003). Results of the batch experiments demonstrate highly active microbial processing of S2O3(2-) while abiotic controls under identical experimental conditions remain static with no pH decrease. When abiotic controls were manually titrated with acid to achieve similar pH decreases to those occurring in the microbial treatments, different S pathways were involved. In particular, disproportionation is a substantial component of initial microbial S2O3(2-) processing, and is accelerated by the presence of Fe(III), indicating that recycling of S through intermediate oxidation states is likely to be widespread in acidic mine environments where high [Fe(III)] is common. Furthermore, the microbially mediated S reaction pathways were dependent on both environmental conditions and microbial strain/consortia, indicating that microbial community structure also plays a key role. Collectively, these results highlight the importance of microbial activity, their poor representation by abiotic S models, the likelihood that Fe(III), rather than O2, is a key control on microbial S processing in acid environments and the need to identify the microbial community/strain involved.
In situ characterization and geochemical modelling of acid generation in a mine tailings lake (Moose Lake, ON, Canada) over a 2‐year period (2001–2002; surficial lake pyrrhotite slurry disposal initiated in 2002) show that bacteria significantly impact acidity behaviour through particle‐associated S oxidation and that they do so under conditions that differ from those controlling abiotic pathways. Seasonal epilimnetic pH decreases occurred in both years, decreasing from approximately 3.5 in May to 2.8 by September (2001) or July (2002). Epilimnetic acid generation rates were depth‐dependent, with maximal rates observed not at the surface of lake where O2 concentrations were highest, but rather within a geochemically reactive zone (approximately 1 m thick) of steep, decreasing O2 gradients and dynamic Fe and S geochemistry in the lower epilimnetic region of the lake. Acid generation occurred dominantly through particle rather than aqueous pathways, but model predictions of acid generation via abiotic pyrrhotite oxidation involving either O2 or ferric iron (Fe3+) predicted neither the observed rates nor the depths at which maximal rates occurred. In contrast, model predictions based on microbial pathways involving both O2 and ferric iron (Fe3+) agreed extremely well with both the observed depth profile of H+ generation and the observed rates at any given depth. Imaging showed extensive microbial colonization of epilimnetic‐associated pyrrhotite particles commonly with significant biofilm formation. FISH (fluorescence in situ hybridization) probing of the community in both pelagic and particle compartments indicated mixed communities occurred in both, and that Acidithiobacillus spp. accounted for 2–46% of the total community in either compartment. Initiation of pyrrhotite slurry discharge at the lake surface in 2002 was accompanied by a relative increase in the number of particle‐associated microbes, as well as a relative proportional decrease of Acidithiobacillus spp. in the total microbial community. Given the widespread occurrence of bacteria across mining environments, the implications of our results extend beyond this specific site and provide new insight into bacterially driven processes contributing to bulk system characteristics which are not currently well constrained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.