The microbial community associated with ascocarps of the ectomycorrhizal fungus Tuber borchii Vittad. was studied by both cultivation and direct extraction of bacterial 16S rRNA gene (rDNA) sequence approaches. The inner part of six T. borchii ascoma collected in North-Central Italy was used to establish a bacterial culture collection and to extract the total genomic DNA to obtain a library of 16S rDNAs representative of the truffle bacterial community. Most of the isolates were affiliated to the gamma-Proteobacteria, mainly Fluorescent pseudomonads; some isolates were members of the Bacteroidetes group and Gram-positive bacteria, mostly Bacillaceae. The majority of the clones from the library were alpha-Proteobacteria showing significant similarity values, of greater than 97%, with members of the Sinorhizobium/Ensifer Group, Rhizobium and Bradyrhizobium spp. not previously identified as Tuber-associated bacteria. Only a few bacterial strains belonging to this bacterial subclass were found in the culture collection and isolated on a medium specific for Rhizobium-like organisms. A few clones were members of the beta- and gamma-Proteobacteria; as well as low and high G+C Gram-positive bacteria. Our findings clearly indicate that a dual approach increases the information obtained on the structural composition of a truffle bacterial community as compared to that derived via cultivation or direct recovery of 16S rDNA sequences alone.
This study describes a rapid method to identify different truffle species by analysis of their volatile compound fraction using static headspace solid-phase microextraction gas chromatography/mass spectrometry. The volatile organic compounds (VOCs) were extracted using a new 2-cm 50/30 mm DVB/CAR/PDMS fiber placed for 10 min in the headspace of the truffle sample with the vial maintained at 208C (in a thermostatically controlled analysis room). The mass spectra of the VOC chromatograms were represented as 'fingerprints' of the analysed samples. Next, stepwise factorial discriminant analysis afforded a limited number of characteristic fragment ions that allowed a classification of the truffle species studied. This new method provides an effective approach to rapid quality control and identification of truffle species by analysis of their volatile fraction. Moreover, this method offers the advantage of minimizing thermal, mechanical, and chemical modifications of the truffles, thereby reducing the risk of analytical artifacts.
Tuber ectomycorrhizae in a Tuber magnatum "truffière", located in Central Italy, were studied using molecular methods. Specifically, RFLP-ITS analyses, ITS sequencing and specific probes hybridization were used to identify 335 Tuber-like ectomycorrhizal morphotypes. Molecular identification was possible even when distinct morphological characteristics were lacking. For the first time, T. magnatum ectomycorrhizae and other coexisting Tuber species collected in the field were analysed using molecular tools for unambiguous identification. Although the "truffière" under investigation yields good harvests of T. magnatum fruiting bodies, the percentage of T. magnatum ectomycorrhizae found was very low (less than 4.4% of the 335 root tips analysed), whereas the percentages of Tuber maculatum and Tuber rufum were considerably higher (48.9% and 19.0%, respectively).
The mycelium of Tuber borchii Vittad., a commercial truffle species, is used as a model system for in vitro ectomycorrhizal synthesis, infected seedling production and biotechnological applications. Our fungal cultures were accidentally contaminated with a Staphylococcus pasteuri strain, showing a strong antifungal activity against T. borchii mycelium. In order to identify the antifungal volatile agents produced by S. pasteuri, solid-phase microextraction (SPME) with gas chromatography and mass spectrometry (GC/MS) was used. Using this method 65 microbial volatile organic compounds (MVOCs), synthesized by this bacterium in either single or in fungal-bacterial dual culture, were identified. SPME combined with GC/MS may be a useful method for the determination of MVOCs involved in the antifungal activity. These results showed that bacteria with unusual biological activities could be a major problem during large-scale production of inoculum for truffle-infected seedling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.