We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
<p>Since May 16, 2012, a seismic sequence has affected a wide portion of the Emilia Region (northern Italy), chiefly for the Modena and Ferrara Provinces. The first mainshock (Ml 5.9; focal depth, ca. 6 km) occurred on May 20, 2012, with the epicenter located a few kilometers north of Finale Emilia. A second main shock (Ml 5.8; focal depth, ca. 10 km) occurred on May 29, 2012, about 12 km west of the first earthquake, with the epicenter near Medolla (Figure 1). The seismic sequence has been characterized by five other Ml ≥5 events, and more than 2,300 aftershocks of lower magnitude, until the end July 2012. The distribution of the aftershocks identifies a WNW-ESE-trending zone ca. 40 km long that is characterized by NNE-SSW nearly pure compression, as indicated by the focal mechanisms [e.g., QRCMT 2012]. This report focuses on the many ground effects that were induced by this seismic sequence, as mainly cracks, liquefaction-type phenomena, and hydrological anomalies. The aim is to provide a complete representation of such effects, to: illustrate their type, size and areal distribution; identify the zones in the affected area that were most prone to the occurrence of ground effects (i.e., more susceptible to local geological instability in the case of earthquake occurrence); carry out an independent assessment of the intensities of the earthquakes through the ESI 2007 intensity scale [Guerrieri and Vittori 2007], which is based only on coseismic effects on the natural environment. […]</p>
<p>We present some preliminary results on the mapping of coseismically-induced ground ruptures following the Aug. 24, 2016, Central Italy earthquake (Mw 6.0). The seismogenic source, as highlighted by InSAR and seismological data, ruptured across two adjacent structures: the Vettore and Laga faults. We collected field data on ground breaks along the whole deformed area and two different scenarios of on-fault coseismic displacement arise from these observations. To the north, along the Vettore fault, surface faulting can be mapped quite continuously along a well-defined fault strand while such features are almost absent to the south, along the Laga fault, where flysch-like marly units are present. A major lithological control, affects the surface expression of faulting, resulting in a complex deformation pattern.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.