SUMMARY The fungal pathogen Sclerotinia sclerotiorum infects a broad range of dicotyledonous plant species and causes stem rot in Brassica napus. To elucidate the mechanisms underlying the defence response, the patterns of gene expression in the partially resistant B. napus cultivar ZhongYou 821 (ZY821) and the susceptible cultivar Westar were studied using a B. napus oligonucleotide microarray. Although maximum differential gene expression was observed at 48 h post-inoculation (hpi) in both cultivars, increased transcript levels were detected in cv. ZY821 at the earlier stages of infection (6-12 hpi) for many genes, including those encoding defence-associated proteins, such as chitinases, glucanases, osmotins and lectins, as well as genes encoding transcription factors belonging to the zinc finger, WRKY, APETALA2 (AP2) and MYB classes. In both cultivars, genes encoding enzymes involved in jasmonic acid, ethylene and auxin synthesis were induced, as were those for gibberellin degradation. In addition, changes in the expression of genes encoding enzymes involved in carbohydrate and energy metabolism appeared to be directed towards shuttling carbon reserves to the tricarboxylic acid cycle and generating reactive oxygen species. Transcripts from genes encoding enzymes involved in glucosinolate and phenylpropanoid biosynthesis were highly elevated in both cultivars, suggesting that secondary metabolites are also components of the response to S. sclerotiorum in B. napus.
Assessment of variability of Ascochyta rabiei (teleomorph: Didymella rabiei) was based on virulence tests of 40 isolates and on random amplified polymorphic DNA (RAPD) analysis of 39 isolates from Canada. In addition, isolates of A. rabiei from other countries were assessed in the virulence (18 isolates) and RAPD (20 isolates) analyses. Seven isolates of A. lentis (teleo-morph: Didymella lentis) and two of A. pinodes (teleomorph: Mycosphaerella pinodes) also were included in the RAPD analysis. Significant line-isolate interactions in the virulence tests indicated that certain isolates were virulent only on certain lines. Canadian isolates were grouped into 14 pathotypes using eight chickpea differentials. These groupings also encompassed 17 of the 18 isolates from other countries. RAPD analysis of all 68 isolates using 8 primers produced 112 fragments, of which 96% were polymorphic. Similarities among A. rabiei isolates from Canada ranged from 20 to 100%. In the RAPD dendrogram, all five A. rabiei isolates from Australia, three of six from Syria, three of five from the United States, and one of two from India clustered within the major groups of Canadian isolates. There was a weak association between RAPD and pathotype groups. A. rabiei was 45% similar to A. lentis and only 14% similar to A. pinodes. The levels of DNA variability and virulence among isolates show that the population of A. rabiei in Canada is highly diverse.
Lentil anthracnose (Colletotrichum truncatum (Schwein.) Andrus et W.D. Moore is a potential threat in many lentil (Lens culinaris Medik.) production regions of North America. In the lentil germplasm maintained in Germany and North America, 16 lines were reported to have resistance to race Ct1, but none has resistance reported to race Ct0. The objective of this study was to examine accessions of wild Lens species for their resistance to races Ct1 and Ct0 of lentil anthracnose. Five hundred and seventy-four wild accessions of six species and control lines were screened in two replications under both field and greenhouse conditions using a 1-9 scoring scale (1, highly resistant; 2-3, resistant; 4-5, moderately resistant; 6-7, susceptible; and 8-9, highly susceptible). Indianhead and PI 320937 were resistant while Eston and Pardina were susceptible to race Ct1 as expected. However, none of the check lines were resistant to race Ct0. Among the six Lens wild species tested, accessions of Lens ervoides (Brign.) Grande had the highest level of resistance, 3-5 to race Ct1 and Ct0 followed by L. lamottei Czefr. in the field and greenhouse. Lens orientalis (Boiss.), L. odemensis L., L. nigricans (M. Bieb.) Godron and L. tomentosus L. were highly susceptible, 8-9 to race Ct0 in the greenhouse. The highest frequency of resistance, especially in L. ervoides (Brign.) Grande, was found in accessions originating from Syria and Turkey. The usefulness of these L. ervoides (Brign.) Grande accessions as sources of resistance to the more virulent race of anthracnose in a lentil breeding program is discussed.
A total of 1,771 lentil accessions from the U.S. lentil collection (U.S. Department of Agriculture-Agricultural Research Service, Pullman, WA) and the Institut für Pflanzengenetik und Kulturpflanzenforschung (Gatersleben, Germany) were screened for resistance to Colletotrichum truncatum, the cause of anthracnose. About 95% of the accessions were susceptible when inoculated with a single isolate in the field. Retesting, under controlled conditions, of accessions rated as resistant or moderately resistant in the field resulted in identification of anthracnose resistance in four accessions from the U.S. collection (PI 320937, PI 320952 [cv. Indianhead], PI 345629, and 468901), and 12 accessions from the German collection (Lens 3, 102, 104, 106, 107, 119, 122, 134, 135, 177, 195, and 209). Seven of the accessions were used as host differentials to characterize pathogenic variability of 50 single-spore isolates collected in Manitoba and Saskatchewan, Canada. The presence of two distinct races was demonstrated. Isolates of C. truncatum avirulent on cv. Indianhead, PI 320937, PI 345629, PI 468901, Lens 102, Lens 104, and Lens 195 were designated race Ct1. Isolates that were virulent on these seven entries were designated race Ct0, indicating their lack of avirulence genes. Race Ct0 was isolated more frequently from commercial seed samples than race Ct1, but the two races were isolated with similar frequency from plants in commercial fields planted to susceptible cultivars. Race Ct0, to which no resistance has yet been identified, presents a high risk to lentil production in Canada and potentially worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.