Several studies have evaluated human risks due mercury (Hg) exposure through fish consumption. However, relatively few studies have explored effects of environmental Hg concentrations in biota, especially tropical fish species. The aim of this work was to assess in situ hematological, biochemical and genotoxic effects in tropical fish due to environmental exposure to mercury in estuarine ecosystems. A total of 282 fishes were collected from September 2003 to October 2005 in two estuarine areas: Ribeira Bay (reference area-22° 55' to 23° 02' S and 44° 18' to 44° 26' W) and Guanabara Bay (highly impacted area by human activities-22° 40' to 23° 00' S and 43° 00' to 43° 20' E). Total mercury levels in fish from Guanabara were twice higher than in Ribeira bay for the catfish species Genidens genidens (Ariidae), with significant differences among areas after standardization using length intervals (exposure time indicator). The species Haemulon steindachneri (Haemulidae) showed the highest mercury concentration, reflecting its position in trophic chain. Among effect biomarkers, only haematocrit, global leucometry and micronucleus assays seemed to reflect the differences on mercury exposure among areas, what may support their use for evaluations of fish exposure to mercury compounds. However, it's necessary both laboratory experiments to establish cause-effect relationship and a continuous in situ study to obtain more information, involving more trophic levels, searching for sensible species to mercury exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.