The valorization of rubber seed shell into useful materials for industrial applications in polymer technology is of great interest. The usefulness of this material is borne out of the ease of processing; it’s readily available at low or no cost, and less abrasive to equipment. Literature and research reports have shown that rubber seed shell has gained applications in the adhesive industry as reinforcing additive, in electrode manufacturing, as filler in polymer composites, as sorbent in the uptake of heavy metals during waste water treatments, as starting material in the production carbon materials for value added products for the industry. However, there are still outstanding prospects in the utilization of this material in various areas of polymer technology such as a lignocellulosic source for the production of biodegradable foams, polymer gels, second generation bio-plastics and biofuels, and as surfactants. This review examines the results of a retrospective and prospective study in polymer technology of the latent properties inherent in rubber seed shell with particular emphasis on its utilization in polymer technology.
All over the world, polyethylene wastes has been found littered on the streets of most communities and states. Palm kernel shell (agricultural waste) constitutes dirt and environmental pollution. The aim of this research was to study the potentials of palm kernel shell (PKS) filler as reinforcement for low density polyethylene (LDPE) waste. LDPE-Palm kernel shell composites of varying ratio (100:0, 90:10, 80:20, 70:30, 60:40, 50:50) of LDPE to PKS respectively were produced using the compression moulding technique. Mechanical properties such as water absorption, hardness, young’s modulus and tensile strength of the composites were found to increase with increasing PKS loading. The results showed that composites containing 40% of PKS gave the highest tensile strength corresponding to 18.42MPa. The results also indicated that the composites with 50% filler loading gave the highest hardness of 84.25A and water absorption rate which stood at 3.1%. The elongation at break was found to decrease with increasing filler content. The scanning electron micrograph (SEM) obtained revealed that the composites with 20% and 50% palm kernel shell had voids and surface cracks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.