BackgroundAllele specific gene expression (ASE), with the paternal allele more expressed than the maternal allele or vice versa, appears to be a common phenomenon in humans and mice. In other species the extent of ASE is unknown, and even in humans and mice there are several outstanding questions. These include; to what extent is ASE tissue specific? how often does the direction of allele expression imbalance reverse between tissues? how often is only one of the two alleles expressed? is there a genome wide bias towards expression of the paternal or maternal allele; and finally do genes that are nearby on a chromosome share the same direction of ASE? Here we use gene expression data (RNASeq) from 18 tissues from a single cow to investigate each of these questions in turn, and then validate some of these findings in two tissues from 20 cows.ResultsBetween 40 and 100 million sequence reads were generated per tissue across three replicate samples for each of the eighteen tissues from the single cow (the discovery dataset). A bovine gene expression atlas was created (the first from RNASeq data), and differentially expressed genes in each tissue were identified. To analyse ASE, we had access to unambiguously phased genotypes for all heterozygous variants in the cow’s whole genome sequence, where these variants were homozygous in the whole genome sequence of her sire, and as a result we were able to map reads to parental genomes, to determine SNP and genes showing ASE in each tissue. In total 25,251 heterozygous SNP within 7985 genes were tested for ASE in at least one tissue. ASE was pervasive, 89 % of genes tested had significant ASE in at least one tissue. This large proportion of genes displaying ASE was confirmed in the two tissues in a validation dataset.For individual tissues the proportion of genes showing significant ASE varied from as low as 8–16 % of those tested in thymus to as high as 71–82 % of those tested in lung. There were a number of cases where the direction of allele expression imbalance reversed between tissues. For example the gene SPTY2D1 showed almost complete paternal allele expression in kidney and thymus, and almost complete maternal allele expression in the brain caudal lobe and brain cerebellum. Mono allelic expression (MAE) was common, with 1349 of 4856 genes (28 %) tested with more than one heterozygous SNP showing MAE. Across all tissues, 54.17 % of all genes with ASE favoured the paternal allele. Genes that are closely linked on the chromosome were more likely to show higher expression of the same allele (paternal or maternal) than expected by chance. We identified several long runs of neighbouring genes that showed either paternal or maternal ASE, one example was five adjacent genes (GIMAP8, GIMAP7 copy1, GIMAP4, GIMAP7 copy 2 and GIMAP5) that showed almost exclusive paternal expression in brain caudal lobe.ConclusionsInvestigating the extent of ASE across 18 bovine tissues in one cow and two tissues in 20 cows demonstrated 1) ASE is pervasive in cattle, 2) the ASE is often MAE but ra...
Dairy products are a key source of valuable proteins and fats for many millions of people worldwide. Dairy cattle are highly susceptible to heat-stress induced decline in milk production, and as the frequency and duration of heat-stress events increases, the long term security of nutrition from dairy products is threatened. Identification of dairy cattle more tolerant of heat stress conditions would be an important progression towards breeding better adapted dairy herds to future climates. Breeding for heat tolerance could be accelerated with genomic selection, using genome wide DNA markers that predict tolerance to heat stress. Here we demonstrate the value of genomic predictions for heat tolerance in cohorts of Holstein cows predicted to be heat tolerant and heat susceptible using controlled-climate chambers simulating a moderate heatwave event. Not only was the heat challenge stimulated decline in milk production less in cows genomically predicted to be heat-tolerant, physiological indicators such as rectal and intra-vaginal temperatures had reduced increases over the 4 day heat challenge. This demonstrates that genomic selection for heat tolerance in dairy cattle is a step towards securing a valuable source of nutrition and improving animal welfare facing a future with predicted increases in heat stress events.
Mammals have a large cohort of endo- and ecto- symbiotic microorganisms (the microbiome) that potentially influence host phenotypes. There have been numerous exploratory studies of these symbiotic organisms in humans and other animals, often with the aim of relating the microbiome to a complex phenotype such as body mass index (BMI) or disease state. Here, we describe an efficient methodology for predicting complex traits from quantitative microbiome profiles. The method was demonstrated by predicting inflammatory bowel disease (IBD) status and BMI from human microbiome data, and enteric greenhouse gas production from dairy cattle rumen microbiome profiles. The method uses unassembled massively parallel sequencing (MPS) data to form metagenomic relationship matrices (analogous to genomic relationship matrices used in genomic predictions) to predict IBD, BMI and methane production phenotypes with useful accuracies (r = 0.423, 0.422 and 0.466 respectively). Our results show that microbiome profiles derived from MPS can be used to predict complex phenotypes of the host. Although the number of biological replicates used here limits the accuracy that can be achieved, preliminary results suggest this approach may surpass current prediction accuracies that are based on the host genome. This is especially likely for traits that are largely influenced by the gut microbiota, for example digestive tract disorders or metabolic functions such as enteric methane production in cattle.
Metabolic disorders in early lactation have negative effects on dairy cow health and farm profitability. One method for monitoring the metabolic status of cows is metabolic profiling, which uses associations between the concentrations of several metabolites in serum and the presence of metabolic disorders. In this cross-sectional study, we investigated the use of midinfrared (MIR) spectroscopy of milk for predicting the concentrations of these metabolites in serum. Between July and October 2017, serum samples were taken from 773 early-lactation Holstein Friesian cows located on 4 farms in the Gippsland region of southeastern Victoria, Australia, on the same day as milk recording. The concentrations in sera of β-hydroxybutyrate (BHB), fatty acids, urea, Ca, Mg, albumin, and globulins were measured by a commercial diagnostic laboratory. Optimal concentration ranges for each of the 7 metabolites were obtained from the literature. Animals were classified as being either affected or unaffected with metabolic disturbances based on these ranges. Milk samples were analyzed by MIR spectroscopy. The relationships between serum metabolite concentrations and MIR spectra were investigated using partial least squares regression. Partial least squares discriminant analyses (PLS-DA) were used to classify animals as being affected or not affected with metabolic disorders. Calibration equations were constructed using data from a randomly selected subset of cows (n = 579). Data from the remaining cows (n = 194) were used for validation. The coefficient of determination (R 2) of serum BHB, fatty acids, and urea predictions were 0.48, 0.61, and 0.90, respectively. Predictions of Ca, Mg, albumin, and globulin concentrations were poor (0.06 ≤ R 2 ≤ 0.17). The PLS-DA models could predict elevated fatty acid and urea concentrations with an accuracy of approximately 77 and 94%, respectively. A second independent validation data set was assembled in March 2018, comprising blood and milk samples taken from 105 autumn-calving cows of various breeds. The accuracies of BHB and fatty acid predictions were similar to those obtained using the first validation data set. The PLS-DA results were difficult to interpret due to the low prevalence of metabolic disorders in the data set. Our results demonstrate that MIR spectroscopy of milk shows promise for predicting the concentration of BHB, fatty acids, and urea in serum; however, more data are needed to improve prediction accuracies.
The objective of the present research was to describe the physiological and production responses of lactating dairy cows during and after sudden exposure to temperate-climate heat-wave conditions, compared with cows in thermoneutral conditions. Twelve lactating multiparous Holstein–Friesian dairy cows were housed in controlled-climate chambers for 4 days. Six were exposed to a short-term temperature and humidity challenge (THc, diurnal temperature and humidity fluctuations inducing moderate heat stress; temperature humidity index 74–84) and six cows were exposed to thermoneutral conditions (THn, temperatur humidity index 55–61). Cows were also measured during a 7-day pre-experimental and 14-day post-experimental period. Physiological indicators of heat stress were measured, including rectal and vaginal temperature and respiration rate, which indicated that the THc in controlled-climate chambers induced moderate heat stress. The cows exposed to the 4-day THc reduced their milk yield by 53% and their dry-matter intake by 48%, compared with the cows in the THn treatment. Milk yield of THc cows returned to pre-experimental milk yield by Day 7 and dry-matter intake by Day 4 of the post-experimental period. The short-term heat challenge induced metabolic adaptations by mobilising adipose tissue, as indicated by increased non-esterified fatty acids, and amino acids from skeletal muscle, as indicated by increased urea nitrogen to compensate for reduced nutrient intake and increased energy expenditure. Endocrine responses included greater prolactin concentrations, which is associated with thermoregulation and water metabolism. The cows exposed to THc displayed production and physical responses that facilitated lower metabolic heat production and greater heat dissipation in an attempt to maintain homeostasis during the short-term heat exposure. These results indicated that the conditions imposed on the cows in the controlled-climate chambers were sufficient to induce heat-stress responses and adversely affected production in the lactating dairy cow, and the delay between the return to normal feed intake and milk yield following the heat challenge suggests a period of metabolic recovery was occurring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.