Prompt coronary catheterization and revascularization have dramatically improved
the outcome of myocardial infarction, but also have resulted in a growing number of
survived patients with permanent structural damage of the heart, which frequently leads to
heart failure. Finding new treatments for this condition is a largely unmet clinical need
1, especially because of the incapacity of
cardiomyocytes to replicate after birth and thus achieve regeneration of the lost
contractile tissue 2. Here we show that expression
of human microRNA-199a in infarcted pig hearts is capable of stimulating cardiac repair.
One month after myocardial infarction and delivery of this microRNA through an
adeno-associated viral vector, the treated animals showed marked improvements in both
global and regional contractility, increased muscle mass and reduced scar size. These
functional and morphological findings correlated with cardiomyocyte de-differentiation and
proliferation. At longer follow-up, however, persistent and uncontrolled expression of the
microRNA resulted in sudden arrhythmic death of most of the treated pigs. Such events were
concurrent with myocardial infiltration of proliferating cells displaying a poorly
differentiated myoblastic phenotype. These results show that achieving cardiac repair
through the stimulation of endogenous cardiomyocyte proliferation is attainable in large
mammals, however this therapy needs to be tightly dosed.
Dilated cardiomyopathy (DCM) is a myocardial disease of dogs and humans characterized by progressive ventricular dilation and depressed contractility and it is a frequent cause of heart failure. Conventional pharmacological therapy cannot reverse the progression of the disease and, in humans, cardiac transplantation remains the only option during the final stages of heart failure. Cytoprotective gene therapy with vascular endothelial growth factor-B167 (VEGF-B167) has proved an effective alternative therapy, halting the progression of the disease in experimental studies on dogs. The aim of this work was to test the tolerability and feasibility of intracoronary administration, under fluoroscopic guidance, of VEGF-B167 carried by adeno-associated viral vectors in canine DCM patients. Ten patients underwent the gene delivery procedure. The intraoperative phase was well tolerated by all dogs. Clinical and echocardiographic assessments at 7- and 30-days post-procedure showed stable conditions compared to the pre-procedure phase. The results of this work indicate that intracoronary VEGF-B167 gene delivery is feasible and tolerated in dogs with DCM. Further monitoring/investigations are ongoing to evaluate the effects of this therapy on disease progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.